Ultra-high temperature ceramics based on ZrB2 obtained by pressureless sintering with addition of Cr3C2, Mo2C, and WC

[1]  D. Sciti,et al.  Design of ultra-high temperature ceramic nano-composites from multi-scale length microstructure approach , 2021, Composites Part B: Engineering.

[2]  L. Silvestroni,et al.  Effect of Mo2C addition on the mechanical properties and oxidation resistance of ZrB2-SiC ceramics , 2021 .

[3]  O. Grigoriev,et al.  Structure, Strength, and Oxidation Resistance of Ultrahigh-Temperature ZrB2–SiC–WC Ceramics , 2021, Powder Metallurgy and Metal Ceramics.

[4]  A. V. Stepanenko,et al.  ZrB2 – SiC ceramics: Residual stresses and mechanical properties , 2021 .

[5]  J. Zou,et al.  Core‒rim structure, bi-solubility and a hierarchical phase relationship in hot-pressed ZrB2‒SiC‒MC ceramics (M=Nb, Hf, Ta, W) , 2021 .

[6]  G. Hilmas,et al.  A simple route to fabricate strong boride hierarchical composites for use at ultra-high temperature , 2020 .

[7]  O. Grigoriev,et al.  Features of Zirconium Boride–Chromium Interaction , 2019, Powder Metallurgy and Metal Ceramics.

[8]  A. Utkin,et al.  The peculiarities in oxidation behavior of the ZrB2-SiC ceramics with chromium additive , 2019, International Journal of Refractory Metals and Hard Materials.

[9]  Young‐Wook Kim,et al.  Pressureless sintered silicon carbide matrix with a new quaternary additive for fully ceramic microencapsulated fuels , 2019, Journal of the European Ceramic Society.

[10]  Hongbiao Dong,et al.  Vaporization of Ni, Al and Cr in Ni-Base Alloys and Its Influence on Surface Defect Formation During Manufacturing of Single-Crystal Components , 2019, Metallurgical and Materials Transactions A.

[11]  Brahma Raju Golla,et al.  Effect of tantalum addition on microstructure and oxidation of spark plasma sintered ZrB2-20vol% SiC composites , 2019, Ceramics International.

[12]  G. Hilmas,et al.  ZrB2-MoSi2 ceramics: A comprehensive overview of microstructure and properties relationships. Part I: Processing and microstructure , 2019, Journal of the European Ceramic Society.

[13]  M. Galetz,et al.  Volatilization kinetics of chromium oxide, manganese oxide, and manganese chromium spinel at high temperatures in environments containing water vapor , 2019, Materials and Corrosion.

[14]  Young‐Wook Kim,et al.  Low temperature pressureless sintering of silicon carbide ceramics with alumina–yttria–magnesia-calcia , 2019, Journal of the Ceramic Society of Japan.

[15]  G. Hilmas,et al.  Densification behavior of ZrB2-MoSi2 ceramics: The formation and evolution of core-shell solid solution structures , 2019, Journal of Alloys and Compounds.

[16]  I. Neshpor,et al.  Contact Interaction of Zirconium Diboride with Nickel and Nickel Alloys. II. Contact Interaction in the Zirconium Boride–Nichrome System , 2019, Powder Metallurgy and Metal Ceramics.

[17]  T. Cui,et al.  Modulating Hardness in Molybdenum Monoborides by Adjusting an Array of Boron Zigzag Chains , 2018, Chemistry of Materials.

[18]  Leifeng Liu,et al.  Segregation of tungsten atoms at ZrB2 grain boundaries in strong ZrB2-SiC-WC ceramics , 2018, Scripta Materialia.

[19]  L. Silvestroni,et al.  Method to improve the oxidation resistance of ZrB2-based ceramics for reusable space systems , 2018 .

[20]  H. Kleebe,et al.  Understanding the oxidation behavior of a ZrB2–MoSi2 composite at ultra-high temperatures , 2018, Acta Materialia.

[21]  A. V. Koroteev,et al.  Behavior of Ultrahigh-Temperature ZrB2-Based Ceramics in Oxidation , 2018, Powder Metallurgy and Metal Ceramics.

[22]  J. Zou,et al.  Thermoablative resistance of ZrB 2 -SiC-WC ceramics at 2400 °C , 2017 .

[23]  D. V. Yurechko,et al.  High-Temperature ZrB2-Based Coatings on Metallic Alloys Produced by High-Velocity Air-Fuel Thermal Spraying , 2017, Powder Metallurgy and Metal Ceramics.

[24]  H. Kleebe,et al.  Microstructure evolution of a W‐doped ZrB2 ceramic upon high‐temperature oxidation , 2017 .

[25]  H. Kleebe,et al.  Super-strong materials for temperatures exceeding 2000 °C , 2017, Scientific Reports.

[26]  L. Silvestroni,et al.  Combined effects of WC and SiC on densification and thermo-mechanical stability of ZrB2 ceramics , 2016 .

[27]  W. Han,et al.  Ablation resistance of ZrB2SiC/SiC coating prepared by pack cementation for graphite , 2016 .

[28]  V. Vinokurov,et al.  Sintering of Zirconium Diboride and Phase Transformations in the Presence of Cr3C2 , 2016, Powder Metallurgy and Metal Ceramics.

[29]  M. Mashhadi,et al.  Effect of MoSi2 addition and particle size of SiC on pressureless sintering behavior and mechanical properties of ZrB2–SiC–MoSi2 composites , 2016 .

[30]  G. Hilmas,et al.  Sintering Mechanisms and Kinetics for Reaction Hot‐Pressed ZrB2 , 2015 .

[31]  Baochang Liu,et al.  Hardness, elastic, and electronic properties of chromium monoboride , 2015 .

[32]  G. Hilmas,et al.  Mechanical behavior of zirconium diboride–silicon carbide–boron carbide ceramics up to 2200 °C , 2015 .

[33]  G. Hilmas,et al.  Thermal Properties of (Zr, TM)B2 Solid Solutions with TM = Ta, Mo, Re, V, and Cr , 2015 .

[34]  G. Mohanty,et al.  Crystal growth and mechanical characterization of ZrMo2O8 , 2014 .

[35]  G. Hilmas,et al.  Thermal Conductivity of ZrB2 and HfB2 , 2014 .

[36]  D. Sciti,et al.  Oxidation behavior of ZrB2 composites doped with various transition metal silicides , 2014 .

[37]  C. Artini,et al.  Experimental investigations and thermodynamic modeling in the ZrB2Ni section of the BNiZr system , 2014 .

[38]  Guo‐Jun Zhang,et al.  Role of WC additive on reaction, solid-solution and densification in HfB2–SiC ceramics , 2014 .

[39]  G. Hilmas,et al.  Effects of temperature and the incorporation of W on the oxidation of ZrB2 ceramics , 2014 .

[40]  G. Hilmas,et al.  Oxidation of Zirconium Diboride with Niobium Additions , 2013 .

[41]  K. Ray,et al.  Effect of SiC content, additives and process parameters on densification and structure–property relations of pressureless sintered ZrB2–SiC composites , 2013 .

[42]  William G. Fahrenholtz,et al.  Strength of Zirconium Diboride to 2300°C , 2013 .

[43]  D. Sciti,et al.  Effect of Transition Metal Silicides on Microstructure and Mechanical Properties of Ultra-High Temperature Ceramics , 2013 .

[44]  V. Lavrenko,et al.  High-temperature (to 1600°C) oxidation of ZrB2–MoSi2 ceramics in air , 2012, Powder Metallurgy and Metal Ceramics.

[45]  D. C. Harris,et al.  Crystal growth of ZrW2O8 and its optical and mechanical characterization , 2012 .

[46]  G. Hilmas,et al.  Oxidation of Zirconium Diboride with Tungsten Carbide Additions , 2011 .

[47]  J. Zou,et al.  ZrO2 removing reactions of Groups IV–VI transition metal carbides in ZrB2 based composites , 2011 .

[48]  S. Guo,et al.  Oxidation behavior of ZrB2–MoSi2–SiC composites in air at 1500 °C , 2011 .

[49]  F. Giuliani,et al.  The Effect of Load and Temperature on Hardness of ZrB2 Composites , 2010 .

[50]  S. M. Ivanov,et al.  Mechanical properties of ZrB2–SiC(ZrSi2) ceramics , 2010 .

[51]  Zhi Wang,et al.  Flexural strength and fracture behavior of ZrB2-SiC ultra-high temperature ceramic composites at 1800°C , 2010 .

[52]  Rosario Borrelli,et al.  Thermo-structural behaviour of an UHTC made nose cap of a reentry vehicle , 2009 .

[53]  J. Zou,et al.  Formation of tough interlocking microstructure in ZrB_2—SiC-based ultrahigh-temperature ceramics by pressureless sintering , 2009 .

[54]  T. Aizawa,et al.  Solid solution ranges of zirconium diboride with other refractory diborides: HfB2, TiB2, TaB2, NbB2, VB2 and CrB2 , 2009 .

[55]  Y. Yan,et al.  Pressureless sintering of ZrB2–SiC ceramics: the effect of B4C content , 2009 .

[56]  J. Zou,et al.  Pressureless densification of ZrB2–SiC composites with vanadium carbide , 2008 .

[57]  J. Zaykoski,et al.  High‐Temperature Chemistry and Oxidation of ZrB2 Ceramics Containing SiC, Si3N4, Ta5Si3, and TaSi2 , 2008 .

[58]  G. Hilmas,et al.  Pressureless Sintering of Zirconium Diboride: Particle Size and Additive Effects , 2008 .

[59]  Raffaele Savino,et al.  Arc-jet testing on HfB2 and HfC-based ultra-high temperature ceramic materials , 2008 .

[60]  G. Hilmas,et al.  Pressureless Sintering of ZrB2–SiC Ceramics , 2007 .

[61]  William G. Fahrenholtz,et al.  Pressureless Sintering of Zirconium Diboride Using Boron Carbide and Carbon Additions , 2007 .

[62]  I. Jung,et al.  Thermodynamic modeling of the B2O3–SiO2 and B2O3–Al2O3 systems , 2007 .

[63]  M. L. Muolo,et al.  Liquid metal/ceramic interactions in the (Cu, Ag, Au)/ZrB2 systems , 2007 .

[64]  D. Sciti,et al.  Microstructure and mechanical properties of ZrB2–MoSi2 ceramic composites produced by different sintering techniques , 2006 .

[65]  D. Sciti,et al.  Properties of a Pressureless‐Sintered ZrB2–MoSi2 Ceramic Composite , 2006 .

[66]  G. Hilmas,et al.  Pressureless Sintering of Zirconium Diboride , 2006 .

[67]  W. Fahrenholtz The ZrB2 Volatility Diagram , 2005 .

[68]  J. Zaykoski,et al.  Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: Theoretical considerations and historical experience , 2004 .

[69]  Donald T. Ellerby,et al.  High‐Strength Zirconium Diboride‐Based Ceramics , 2004 .

[70]  A. Bellosi,et al.  Advances in microstructure and mechanical properties of zirconium diboride based ceramics , 2003 .

[71]  G. Kowach Growth of single crystals of ZrW2O8 , 2000 .

[72]  S. Okada,et al.  Preparations and Some Properties of W2B, δ-WB and WB2 Crystals from High-Temperature Metal Solutions , 1995 .

[73]  M. Venkatraman,et al.  The C-Cr (Carbon-Chromium) System , 1990 .

[74]  Y. Kumashiro,et al.  The Vickers micro-hardness of NbC, ZrC and TaC single crystals up to 1500°C , 1982 .

[75]  D. Hasselman,et al.  Evaluation ofKIc of brittle solids by the indentation method with low crack-to-indent ratios , 1982 .

[76]  R. Tilley,et al.  Phase relations in the ternary W-Mo-O system , 1981 .

[77]  T. Velikanova,et al.  Phase equilibria in the ternary systems formed by molybdenum and tungsten with the groups IV and V transition metals and carbon , 1974 .

[78]  R. A. Andrievskii,et al.  SELF-DIFFUSION OF CARBON AND METAL ATOMS IN ZIRCONIUM AND NIOBIUM CARBIDES. , 1971 .

[79]  G. Samsonov,et al.  Mechanism of the reaction of refractory metals with boron in vacuum boriding , 1970 .

[80]  V. Kharitonov,et al.  Ternary system Mo-W-B , 1969 .

[81]  V. M. Gropyanov,et al.  Sintering and recrystallization of ZrC-ZrB2 compacts , 1968 .

[82]  M. A. Kuzenkova,et al.  The oxidation resistance of alloys of zirconium boride with molybdenum disilicide , 1965 .

[83]  E. A. Gulbransen,et al.  Oxidation of Molybdenum 550° to 1700°C , 1963 .

[84]  E. A. Gulbransen,et al.  High-temperature Oxidation of Tungsten, Molybdenum and Carbon , 1963, Nature.