Efficient parallel linear scaling method to get the response density matrix in all-electron real-space density-functional perturbation theory

Abstract The real-space density-functional perturbation theory (DFPT) for the computations of the response properties with respect to the atomic displacement and homogeneous electric field perturbation has been recently developed and implemented into the all-electron, numeric atom-centered orbitals electronic structure package FHI-aims. It is found that the bottleneck for large scale applications is the computation of the response density matrix, which scales as O ( N 3 ) . Here for the response properties with respect to the homogeneous electric field, we present an efficient parallel linear scaling algorithm for the response density matrix calculation. Our scheme is based on the second-order trace-correcting purification and the parallel sparse matrix–matrix multiplication algorithms. The new scheme reduces the formal scaling from O ( N 3 ) to O ( N ) , and shows good parallel scalability over tens of thousands of cores. As demonstrated by extensive validation, we achieve a rapid computation of accurate polarizabilities using DFPT. Finally, the computational efficiency of this scheme has been illustrated by making the scaling tests and scalability tests on massively parallel computer systems.

[1]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[2]  A. Tkatchenko,et al.  Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions , 2012, 1201.0655.

[3]  Fred G. Gustavson,et al.  Two Fast Algorithms for Sparse Matrices: Multiplication and Permuted Transposition , 1978, TOMS.

[4]  Matthias Scheffler,et al.  Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions , 2009, J. Comput. Phys..

[5]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[6]  Takahito Nakajima,et al.  Massively parallel sparse matrix function calculations with NTPoly , 2017, Comput. Phys. Commun..

[7]  Christian Ochsenfeld,et al.  A reformulation of the coupled perturbed self-consistent field equations entirely within a local atomic orbital density matrix-based scheme , 1997 .

[8]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[9]  David R. Bowler,et al.  Pseudo-atomic orbitals as basis sets for the O(N) DFT code CONQUEST , 2008 .

[10]  Anders M. N. Niklasson,et al.  Trace resetting density matrix purification in O(N) self-consistent-field theory , 2003 .

[11]  Mathias Jacquelin,et al.  ELSI: A unified software interface for Kohn-Sham electronic structure solvers , 2017, Comput. Phys. Commun..

[12]  Xavier Gonze,et al.  First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm , 1997 .

[13]  James Demmel,et al.  Communication optimal parallel multiplication of sparse random matrices , 2013, SPAA.

[14]  Emanuel H. Rubensson,et al.  Assessment of density matrix methods for linear scaling electronic structure calculations , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  John R. Gilbert,et al.  The Combinatorial BLAS: design, implementation, and applications , 2011, Int. J. High Perform. Comput. Appl..

[16]  Annabella Selloni,et al.  Order-N implementation of exact exchange in extended insulating systems , 2008, 0812.1322.

[17]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[18]  Jörg Kussmann,et al.  A density matrix-based method for the linear-scaling calculation of dynamic second- and third-order properties at the Hartree-Fock and Kohn-Sham density functional theory levels. , 2007, The Journal of chemical physics.

[19]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[20]  B. Delley,et al.  Analytic energy derivatives in the numerical local‐density‐functional approach , 1991 .

[21]  Anders M.N. Niklasson Expansion algorithm for the density matrix , 2002 .

[22]  D. Bowler,et al.  O(N) methods in electronic structure calculations. , 2011, Reports on progress in physics. Physical Society.

[23]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[24]  R. Sternheimer,et al.  ELECTRONIC POLARIZABILITIES OF IONS FROM THE HARTREE-FOCK WAVE FUNCTIONS , 1954 .

[25]  X. Gonze,et al.  Density-functional approach to nonlinear-response coefficients of solids. , 1989, Physical review. B, Condensed matter.

[26]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[27]  Ian M. Mills,et al.  Force Constants and Dipole-Moment Derivatives of Molecules from Perturbed Hartree-Fock Calculations. I , 1968 .

[28]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[29]  Emanuel H. Rubensson,et al.  Density matrix purification with rigorous error control. , 2008, The Journal of chemical physics.

[30]  Proceedings of the Platform for Advanced Scientific Computing Conference , 2017, PASC.

[31]  Efficient index handling of multidimensional periodic boundary conditions , 2001, cond-mat/0104182.

[32]  P. Löwdin On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals , 1950 .

[33]  Martin Head-Gordon,et al.  An efficient approach for self-consistent-field energy and energy second derivatives in the atomic-orbital basis. , 2005, The Journal of chemical physics.

[34]  A M N Niklasson,et al.  Efficient parallel linear scaling construction of the density matrix for Born-Oppenheimer molecular dynamics. , 2015, Journal of chemical theory and computation.

[35]  Anders M N Niklasson,et al.  Computation of the Density Matrix in Electronic Structure Theory in Parallel on Multiple Graphics Processing Units. , 2014, Journal of chemical theory and computation.

[36]  Samuel Williams,et al.  Exploiting Multiple Levels of Parallelism in Sparse Matrix-Matrix Multiplication , 2015, SIAM J. Sci. Comput..

[37]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[38]  Valéry Weber,et al.  Parallel algorithm for the computation of the Hartree-Fock exchange matrix: gas phase and periodic parallel ONX. , 2006, The Journal of chemical physics.

[39]  Emanuel H. Rubensson,et al.  Systematic sparse matrix error control for linear scaling electronic structure calculations , 2005, J. Comput. Chem..

[40]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[41]  J. Olsen,et al.  Linear-scaling symmetric square-root decomposition of the overlap matrix. , 2007, The Journal of chemical physics.

[42]  Qingshi Zhu,et al.  Linear-scaling density matrix perturbation treatment of electric fields in solids. , 2006, Physical review letters.

[43]  J. S. Binkley,et al.  Derivative studies in hartree-fock and møller-plesset theories , 2009 .

[44]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[45]  Michael J. Frisch,et al.  Direct analytic SCF second derivatives and electric field properties , 1990 .

[46]  Valéry Weber,et al.  Ab initio linear scaling response theory: electric polarizability by perturbed projection. , 2004, Physical review letters.

[47]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[48]  Christian Ochsenfeld,et al.  Efficient linear-scaling calculation of response properties: density matrix-based Laplace-transformed coupled-perturbed self-consistent field theory. , 2008, The Journal of chemical physics.

[49]  Zhenyu Li,et al.  Linear scaling electronic structure calculations with numerical atomic basis set , 2010 .

[50]  Alfio Lazzaro,et al.  Increasing the Efficiency of Sparse Matrix-Matrix Multiplication with a 2.5D Algorithm and One-Sided MPI , 2017, PASC.

[51]  Christian F. A. Negre,et al.  The basic matrix library (BML) for quantum chemistry , 2018, The Journal of Supercomputing.

[52]  Joost VandeVondele,et al.  cp2k: atomistic simulations of condensed matter systems , 2014 .

[53]  Matthias Scheffler,et al.  Lattice dynamics calculations based on density-functional perturbation theory in real space , 2016, Comput. Phys. Commun..

[54]  Mariana Rossi,et al.  All-electron, real-space perturbation theory for homogeneous electric fields: theory, implementation, and application within DFT , 2018, New Journal of Physics.

[55]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[56]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[57]  Matt Challacombe,et al.  Density matrix perturbation theory. , 2003, Physical review letters.

[58]  Clifford E. Dykstra,et al.  Derivative Hartree—Fock theory to all orders , 1984 .

[59]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[60]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[61]  D R Bowler,et al.  Calculations for millions of atoms with density functional theory: linear scaling shows its potential , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[62]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[63]  Kohn,et al.  Density functional and density matrix method scaling linearly with the number of atoms. , 1996, Physical review letters.

[64]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[65]  Valéry Weber,et al.  Linear scaling density matrix perturbation theory for basis-set-dependent quantum response calculations: an orthogonal formulation. , 2007, The Journal of chemical physics.

[66]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[67]  Chem. , 2020, Catalysis from A to Z.

[68]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.