Full-Scale Fire Modeling

[1]  Daniel M. Madrzykowski,et al.  Cook County Administration Building Fire, 69 West Washington, Chicago, Illinois, October 17, 2003: Heat Release Rate Experiments And Fds Simulations , 2004 .

[2]  Pascal Boulet,et al.  On radiative transfer in water spray curtains using the Discrete Ordinates Method , 2005 .

[3]  Kevin B. McGrattan,et al.  Numerical modeling of radiative heat transfer in water sprays , 2006 .

[4]  B. Hjertager,et al.  On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion , 1977 .

[5]  Weigang Zhang,et al.  Turbulence statistics in a fire room model by large eddy simulation , 2002 .

[6]  M. Delichatsios,et al.  Soot Formation and Oxidation in Fires from Laminar Smoke Point Measurements , 2008 .

[7]  Daniel Alvear,et al.  Heat release rate and computer fire modelling vs real‐scale fire tests in passenger trains , 2008 .

[8]  Jennifer X. Wen,et al.  EVALUATION OF A FAST CORRELATED- k APPROACH FOR RADIATION CALCULATIONS IN COMBUSTION SYSTEMS , 2003 .

[9]  W. Mell,et al.  A physics-based approach to modelling grassland fires , 2007 .

[10]  Nicholas A. Dembsey,et al.  A simplified model for soot formation and oxidation in CFD simulation of non-premixed hydrocarbon flames , 2005 .

[11]  H. Baum,et al.  Large eddy simulations of smoke movement , 1998 .

[12]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[13]  Pascal Boulet,et al.  Radiative and conductive heat transfer in a nongrey semitransparent medium. Application to fire protection curtains , 2004 .

[14]  Howard R. Baum,et al.  Fire Induced Flow Field - Theory And Experiment , 1989 .

[15]  Howard R. Baum,et al.  Calculations of Three Dimensional Buoyant Plumes in Enclosures , 1984 .

[16]  Santosh Kumar,et al.  Mathematical modeling of natural convection in fire—A state of the art review of the field modelling of variable density turbulent flow , 1983 .

[17]  Zhenghua Yan,et al.  CFD and experimental studies of room fire growth on wall lining materials , 1996 .

[18]  Jean-Louis Consalvi,et al.  Numerical analysis of the heating process in upward flame spread over thick PMMA slabs , 2008 .

[19]  G. D. Raithby,et al.  A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media , 1990 .

[20]  Ümit Özgür Köylü,et al.  Carbon Monoxide and Soot Emissions from Liquid-Fueled Buoyant Turbulent Diffusion Flames , 1991 .

[21]  Daniel Alvear,et al.  Numerical Simulation of Fire Growth, Transition to Flashover, and Post-Flashover Dynamics in the Dalmarnock Fire Test , 2008 .

[22]  K. McGrattan,et al.  Modeling Solid Sample Buming , 2005 .

[23]  Jennifer X. Wen,et al.  The effect of microscopic and global radiative heat exchange on the field predictions of compartment fires , 2001 .

[24]  N. Peters Laminar diffusion flamelet models in non-premixed turbulent combustion , 1984 .

[25]  J. B. Moss,et al.  Flamelet-based smoke properties for the field modelling of fires , 1998 .

[26]  H. Mitler Predicting the spread rates of fires on vertical surfaces , 1991 .

[27]  Guillermo Rein,et al.  The Effect of Model Parameters on the Simulation of Fire Dynamics , 2008 .

[28]  Aloke Kumar Ghoshal,et al.  Hybrid genetic algorithm to find the best model and the globally optimized overall kinetics parameters for thermal decomposition of plastics , 2008 .

[29]  Edward Lester,et al.  The computational modelling of flame spread along a conveyor belt , 2007 .

[30]  Guillermo Rein,et al.  The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data , 2006 .

[31]  Douglas J. Carpenter,et al.  An Updated International Survey of Computer Models for Fire and Smoke , 2003 .

[32]  Michael A. Delichatsios,et al.  Determination of Soot Formation Rate from Laminar Smoke Point Measurements , 2008 .

[33]  G. Raithby Discussion of the finite-volume method for radiation, and its application using 3D unstructured meshes , 1999 .

[34]  S. Pope Ten questions concerning the large-eddy simulation of turbulent flows , 2004 .

[35]  Guan Heng Yeoh,et al.  On modelling combustion, radiation and soot processes in compartment fires , 2003 .

[36]  A. Tewarson,et al.  Fire behavior of polymethylmethacrylate , 1992 .

[37]  Extending the mixture fraction concept to address under-ventilated fires , 2009 .

[38]  Steven G. Parker,et al.  Uintah: a massively parallel problem solving environment , 2000, Proceedings the Ninth International Symposium on High-Performance Distributed Computing.

[39]  Jianping Zhang,et al.  Effect Of Radiation Models On Cfd Simulations Of Upward Flame Spread , 2005 .

[40]  Vasily Novozhilov,et al.  CFD PREDICTION OF POOL FIRE BURNING RATES AND FLAME FEEDBACK , 2004 .

[41]  Cristina H. Amon,et al.  Modeling the radiation of anisotropically scattering media by coupling Mie theory with finite volume method , 2004 .

[42]  Nicholas A. Dembsey,et al.  Evaluation of FDS V.4: Upward Flame Spread , 2007 .

[43]  F. Lockwood,et al.  A new radiation solution method for incorporation in general combustion prediction procedures , 1981 .

[44]  Rong Yang,et al.  Subgrid scale laminar flamelet model for partially premixed combustion and its application to backdraft simulation , 2005 .

[45]  Harold E. Nelson,et al.  Reconstruction of the Fires in the World Trade Center Towers. Federal Building and Fire Safety Investigation of the World Trade Center Disaster (NIST NCSTAR 1-5) | NIST , 2005 .

[46]  S. Patankar,et al.  Finite volume method for radiation heat transfer , 1994 .

[47]  Wan Ki Chow,et al.  LARGE EDDY SIMULATIONS FOR STUDYING TUNNEL SMOKE VENTILATION , 2004 .

[48]  Jennifer X. Wen,et al.  The effect of turbulence modelling on the CFD simulation of buoyant diffusion flames , 2002 .

[49]  Robert W. Bilger,et al.  Reaction rates in diffusion flames , 1977 .

[50]  A. Fernandez-Pello,et al.  Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion , 2006 .

[51]  Zhenghua Yan,et al.  Fast, narrow-band computer model for radiation calculations , 1997 .

[52]  Kevin B. McGrattan,et al.  Numerical Modeling Of Pool Fires Using Les And Finite Volume Method For Radiation , 2003 .

[53]  Kevin B. McGrattan,et al.  Fire-Driven Flows in Enclosures , 1994 .

[54]  J. Wen,et al.  Assessments of Spectral Narrow Band and Weighted-Sum-of-Gray-Gases Models for Computational Fluid Dynamics Simulations of Pool Fires , 2005 .

[55]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[56]  Simo Hostikka,et al.  Estimation of pyrolysis model parameters for solid materials using thermogravimetric data , 2008 .

[57]  Heimo Tuovinen,et al.  Modelling of hydrogen cyanide formation in room fires. Brandforsk project 321-011 , 2004 .

[58]  Alan A. Wray,et al.  On various modeling approaches to radiative heat transfer in pool fires , 2007 .

[59]  Miles Greiner,et al.  Radiation Heat Transfer and Reaction Chemistry Models for Risk Assessment Compatible Fire Simulations , 2006 .

[60]  Jennifer X. Wen,et al.  LARGE EDDY SIMULATION OF A SMALL POOL FIRE , 2004 .

[61]  J. Quintiere,et al.  Numerical simulation of axi-symmetric fire plumes: accuracy and limitations , 2003 .

[62]  Colomba Di Blasi,et al.  Modeling chemical and physical processes of wood and biomass pyrolysis , 2008 .