An explicit second order spectral element method for acoustic waves

Abstract The acoustic wave equation is here discretized by conforming spectral elements in space and by the second order leap-frog method in time. For simplicity, homogeneous boundary conditions are considered. A stability analysis of the resulting method is presented, providing an upper bound for the allowed time step that is proportional to the size of the elements and inversely proportional to the square of their polynomial degree. A convergence analysis is also presented, showing that the convergence error decreases when the time step or the size of the elements decrease or when the polynomial degree increases. Several numerical results illustrating these results are presented.

[1]  Elena Zampieri,et al.  Numerical approximation of elastic waves equations by implicit spectral methods , 1997 .

[2]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[3]  C. Bernardi,et al.  Approximations spectrales de problèmes aux limites elliptiques , 2003 .

[4]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[5]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[6]  A. Quarteroni,et al.  Spectral Approximation of Navier-Stokes Equations , 2000 .

[7]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[8]  Giorgio Fotia,et al.  A mortar spectral/finite element method for complex 2D and 3D elastodynamic problems , 2002 .

[9]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[10]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[11]  Ezio Faccioli,et al.  Spectral-domain decomposition methods for the solution of acoustic and elastic wave equations , 1996 .

[12]  I. Babuska,et al.  The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .

[13]  I. Babuska,et al.  Theh,p andh-p versions of the finite element method in 1 dimension , 1986 .

[14]  Daniele Funaro,et al.  Spectral Elements for Transport-Dominated Equations , 1997, Lecture Notes in Computational Science and Engineering.

[15]  K. R. Kelly,et al.  SYNTHETIC SEISMOGRAMS: A FINITE ‐DIFFERENCE APPROACH , 1976 .

[16]  E. Zampieri On the condition number of some spectral collocation operators and their finite element preconditioning , 1994 .

[17]  Paul Fischer,et al.  High-Order Methods for Incompressible Fluid Flow: Index , 2002 .

[18]  Paola Gervasio,et al.  Stabilized spectral element approximation for the Navier–Stokes equations , 1998 .

[19]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[20]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[21]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[22]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[23]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[24]  R. M. Alford,et al.  ACCURACY OF FINITE‐DIFFERENCE MODELING OF THE ACOUSTIC WAVE EQUATION , 1974 .

[25]  Roland Glowinski,et al.  A Domain Decomposition Method for the Acoustic Wave Equation with Discontinuous Coefficients and Grid Change , 1997 .

[26]  D. Givoli Non-reflecting boundary conditions , 1991 .

[27]  Miguel C. Junger,et al.  Sound, Structures, and Their Interaction , 1972 .

[28]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[29]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[30]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[31]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[32]  Alfio Quarteroni,et al.  Generalized Galerkin approximations of elastic waves with absorbing boundary conditions , 1998 .

[33]  D. Gottlieb,et al.  Spectral methods for hyperbolic problems , 2001 .