Literature Review for Local Polynomial Regression

This paper discusses key results from the literature in the field of local polynomial regression. Local polynomial regression (LPR) is a nonparametric technique for smoothing scatter plots and modeling functions. For each point, x0, a low-order polynomial WLS regression is fit using only points in some “neighborhood” of x0. The result is a smooth function over the support of the data. LPR has good performance on the boundary and is superior to all other linear smoothers in a minimax sense. The quality of the estimated function is dependent on the choice of weighting function, K, the size the neighborhood, h, and the order of polynomial fit, p. We discuss each of these choices, paying particular attention to bandwidth selection. When choosing h, “plug-in” methods tend to outperform cross-validation methods, but computational considerations make the latter a desirable choice. Variable bandwidths are more flexible than global ones, but both can have good asymptotic and finite-sample properties. Odd-order polynomial fits are superior to even fits asymptotically, and an adaptive order method that is robust to bandwidth is discussed. While the Epanechnikov kernel is the best in asymptotic minimax sense, a variety of kernels are used in practice. Extensions to various types of data and other applications of LPR are also discussed.

[1]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[2]  H. Müller,et al.  Estimating regression functions and their derivatives by the kernel method , 1984 .

[3]  E. Nadaraya On Estimating Regression , 1964 .

[4]  M. Wand,et al.  Multivariate Locally Weighted Least Squares Regression , 1994 .

[5]  W. R. Schucany,et al.  Adaptive Bandwidth Choice for Kernel Regression , 1995 .

[6]  S. Lohr,et al.  Bandwidth selection in local polynomial regression using eigenvalues , 2006 .

[7]  Jianqing Fan,et al.  Fast Implementations of Nonparametric Curve Estimators , 1994 .

[8]  Runze Li,et al.  Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression , 2010 .

[9]  Jianqing Fan Local Linear Regression Smoothers and Their Minimax Efficiencies , 1993 .

[10]  Jianqing Fan,et al.  Variable Bandwidth and Local Linear Regression Smoothers , 1992 .

[11]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[12]  Jianqing Fan,et al.  Data‐Driven Bandwidth Selection in Local Polynomial Fitting: Variable Bandwidth and Spatial Adaptation , 1995 .

[13]  R. Tibshirani,et al.  Rejoinder: Linear Smoothers and Additive Models , 1989 .

[14]  Jianqing Fan,et al.  Adaptive Order Polynomial Fitting: Bandwidth Robustification and Bias Reduction , 1995 .

[15]  W. Cleveland,et al.  Regression by local fitting: Methods, properties, and computational algorithms , 1988 .

[16]  Jianqing Fan,et al.  On automatic boundary corrections , 1997 .

[17]  Qi Li,et al.  Multivariate local polynomial regression for estimating average derivatives , 2003 .

[18]  Jeffrey S. Racine,et al.  CROSS-VALIDATED LOCAL LINEAR NONPARAMETRIC REGRESSION , 2004 .

[19]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[20]  Theo Gasser,et al.  Data Adaptive Ridging in Local Polynomial Regression , 2000 .

[21]  Irène Gijbels,et al.  A study of variable bandwidth selection for local polynomial regression , 1996 .

[22]  Yingcun Xia,et al.  Asymptotic Behavior of Bandwidth Selected by the Cross-Validation Method for Local Polynomial Fitting , 2002 .

[23]  Vladimir Spokoiny,et al.  ESTIMATION OF A FUNCTION WITH DISCONTINUITIES VIA LOCAL POLYNOMIAL FIT WITH AN ADAPTIVE WINDOW CHOICE , 1998 .

[24]  T. Gasser,et al.  Fast Algorithms for Nonparametric Curve Estimation , 1994 .

[25]  David Ruppert,et al.  Fitting a Bivariate Additive Model by Local Polynomial Regression , 1997 .

[26]  Matt P. Wand,et al.  On the Accuracy of Binned Kernel Density Estimators , 1994 .

[27]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[28]  C. Loader Local Likelihood Density Estimation , 1996 .

[29]  M. Wand,et al.  An Effective Bandwidth Selector for Local Least Squares Regression , 1995 .

[30]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[31]  Jianqing Fan,et al.  Local Polynomial Regression: Optimal Kernels and Asymptotic Minimax Efficiency , 1997 .

[32]  T. Hastie,et al.  Local Regression: Automatic Kernel Carpentry , 1993 .