Silica-modulated Cu-ZnO-Al2O3 catalyst for efficient hydrogenation of CO2 to methanol

[1]  Sicong Ma,et al.  The role of Cu1–O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation , 2022, Nature Catalysis.

[2]  F. Xiao,et al.  Cu/ZnO/Al2O3 Catalyst Modulated by Zirconia with Enhanced Performance in CO2 Hydrogenation to Methanol , 2022, Industrial & Engineering Chemistry Research.

[3]  Fuzhen Xuan,et al.  Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol , 2022, Nature Catalysis.

[4]  R. J. Wong,et al.  CO2 Hydrogenation to Methanol on Tungsten-Doped Cu/CeO2 Catalysts , 2022, Applied Catalysis B: Environmental.

[5]  Hengyong Xu,et al.  Monometallic iron catalysts with synergistic Na and S for higher alcohols synthesis via CO2 hydrogenation , 2021 .

[6]  N. Tsubaki,et al.  Capsule-Like Zeolite Catalyst Fabricated by Solvent-Free Strategy for para-Xylene Formation from CO Hydrogenation , 2021, Applied Catalysis B: Environmental.

[7]  A. Kierzkowska,et al.  Engineering the Cu/Mo2CTx (MXene) interface to drive CO2 hydrogenation to methanol , 2021, Nature Catalysis.

[8]  Mingbo Wu,et al.  Direct Conversion of CO2 to Ethanol Boosted by Intimacy-Sensitive Multifunctional Catalysts , 2021, ACS Catalysis.

[9]  Jienan Chen,et al.  Structure-Performance Correlations over Cu/ZnO Interface for Low-Temperature Methanol Synthesis from Syngas Containing CO2. , 2021, ACS applied materials & interfaces.

[10]  J. Grunwaldt,et al.  Stabilizing Cu+ in Cu/SiO2 Catalysts with a Shattuckite-Like Structure Boosts CO2 Hydrogenation into Methanol , 2020, ACS Catalysis.

[11]  Xiaoqing Pan,et al.  Selective Methanol Carbonylation to Acetic Acid on Heterogeneous Atomically Dispersed ReO4/SiO2 Catalysts. , 2020, Journal of the American Chemical Society.

[12]  S. Specchia,et al.  Activity and degradation study of an Fe-N-C catalyst for ORR in Direct Methanol Fuel Cell (DMFC) , 2020 .

[13]  B. Gates,et al.  Silica accelerates the selective hydrogenation of CO2 to methanol on cobalt catalysts , 2020, Nature Communications.

[14]  Tao Zhang,et al.  State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. , 2020, Chemical Society reviews.

[15]  Xiao Jiang,et al.  Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. , 2020, Chemical reviews.

[16]  Xinhua Liang,et al.  Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels , 2020, Science.

[17]  Z. Zuo,et al.  Large-Area Aminated-Graphdiyne Thin Film for Direct Methanol Fuel Cells. , 2019, Angewandte Chemie.

[18]  R. Lobo,et al.  Direct conversion of CO2 into methanol over promoted indium oxide-based catalysts , 2019, Applied Catalysis A: General.

[19]  Zhisheng Shi,et al.  Enhanced CO2 hydrogenation to methanol over TiO2 nanotubes-supported CuO-ZnO-CeO2 catalyst , 2019, Applied Catalysis A: General.

[20]  N. Tsubaki,et al.  Direct and Oriented Conversion of CO2 into Value-Added Aromatics. , 2019, Chemistry.

[21]  Xiaoming Guo,et al.  Methanol synthesis from CO2 hydrogenation over CuO-ZnO-ZrO2-MxOy catalysts (M=Cr, Mo and W) , 2019, International Journal of Hydrogen Energy.

[22]  Lirong Zheng,et al.  Modification of Cu/SiO2 Catalysts by La2O3 to Quantitatively Tune Cu+‐Cu0 Dual Sites with Improved Catalytic Activities and Stabilities for Dimethyl Ether Steam Reforming , 2018, ChemCatChem.

[23]  Wenjun Yan,et al.  A Highly Stable Copper-Based Catalyst for Clarifying the Catalytic Roles of Cu0 and Cu+ Species in Methanol Dehydrogenation. , 2018, Angewandte Chemie.

[24]  Yuhan Sun,et al.  Direct Production of Lower Olefins from CO2 Conversion via Bifunctional Catalysis , 2018 .

[25]  Hengyong Xu,et al.  Directly converting CO2 into a gasoline fuel , 2017, Nature Communications.

[26]  Ping Liu,et al.  Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts , 2017, Science.

[27]  Xinlin Hong,et al.  Surface‐Atom Dependence of ZnO‐Supported Ag@Pd Core@Shell Nanocatalysts in CO2 Hydrogenation to CH3OH , 2017 .

[28]  Xinlin Hong,et al.  Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts , 2016 .

[29]  S. Tanaka,et al.  Direct and selective conversion of methanol to para-xylene over Zn ion doped ZSM-5/silicalite-1 core-shell zeolite catalyst , 2016 .

[30]  Yuhan Sun,et al.  Catalytic performance of spray-dried Cu/ZnO/Al2O3/ZrO2 catalysts for slurry methanol synthesis from CO2 hydrogenation , 2016 .

[31]  N. Zhao,et al.  CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method , 2016 .

[32]  Yuhan Sun,et al.  Yttrium oxide modified Cu/ZnO/Al2O3 catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol , 2015 .

[33]  Xiao Jiang,et al.  Bimetallic Pd–Cu catalysts for selective CO2 hydrogenation to methanol , 2015 .

[34]  Zhihua Wang,et al.  Effects of supports on bimetallic Pd-Cu catalysts for CO2 hydrogenation to methanol , 2015, Applied Catalysis A: General.

[35]  Xiaoming Guo,et al.  Effect of TiO2, ZrO2, and TiO2–ZrO2 on the performance of CuO–ZnO catalyst for CO2 hydrogenation to methanol , 2015 .

[36]  N. Homs,et al.  CO2 hydrogenation to methanol over CuZnGa catalysts prepared using microwave-assisted methods , 2015 .

[37]  G. Trunfio,et al.  How oxide carriers control the catalytic functionality of the Cu–ZnO system in the hydrogenation of CO2 to methanol , 2013 .

[38]  G. Trunfio,et al.  Effects of oxide carriers on surface functionality and process performance of the Cu–ZnO system in the synthesis of methanol via CO2 hydrogenation , 2013 .

[39]  A. Urakawa,et al.  Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure , 2013 .

[40]  A. Karelovic,et al.  Effect of the structural and morphological properties of Cu/ZnO catalysts prepared by citrate method on their activity toward methanol synthesis from CO2 and H2 under mild reaction conditions , 2012 .

[41]  Shengping Wang,et al.  Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites. , 2012, Journal of the American Chemical Society.

[42]  Piotr Olszewski,et al.  Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2 , 2006 .

[43]  Yu Liang,et al.  Surface active structure of ultra-fine Cu/ZrO2 catalysts used for the CO2+H2 to methanol reaction , 2001 .