Improved cubature formulae of high degrees of exactness for the square
暂无分享,去创建一个
[1] Ronald Cools,et al. Construction of fully symmetric cubature formulae of degree 4 k -3 for fully symmetric planar regions , 1985 .
[2] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[3] On Symmetric Cubature Formulae for Planar Regions , 1989 .
[4] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[5] Ronald Cools,et al. An encyclopaedia of cubature formulas , 2003, J. Complex..
[6] A cubature formula of degree 19 with 68 nodes for integration over the square , 1991 .
[7] T. N. L. Patterson,et al. Construction of Algebraic Cubature Rules Using Polynomial Ideal Theory , 1978 .
[8] A. G. Greenhill,et al. Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .
[9] H. M. Möller,et al. Kubaturformeln mit minimaler Knotenzahl , 1976 .
[10] Yuan Xu,et al. Constructing cubature formulae by the method of reproducing kernel , 2000, Numerische Mathematik.
[11] A. Stroud,et al. Gaussian quadrature formulas , 1966 .
[12] Fumio Hirata,et al. Solution of three‐dimensional reference interaction site model and hypernetted chain equations for simple point charge water by modified method of direct inversion in iterative subspace , 1999 .
[13] R. Cools,et al. Monomial cubature rules since “Stroud”: a compilation , 1993 .
[14] D. Owen. Handbook of Mathematical Functions with Formulas , 1965 .
[15] Ronald Cools,et al. On the (non)-existence of some cubature formulas: gaps between a theory and its applications , 2003, J. Complex..
[16] D. A. Dunavant. Economical symmetrical quadrature rules for complete polynomials over a square domain , 1985 .
[17] R. Cools. Monomial cubature rules since “Stroud”: a compilation—part 2 , 1999 .
[18] Ronald Cools,et al. Another step forward in searching for cubature formulae with a minimal number of knots for the square , 2005, Computing.
[19] Ronald Cools,et al. Rotation invariant cubature formulas over the n -dimensional unit cube , 2001 .
[20] Ronald Cools,et al. Advances in multidimensional integration , 2002 .
[21] Ronald Cools,et al. Constructing cubature formulae: the science behind the art , 1997, Acta Numerica.