On the way to a patient table integrated scanner system in magnetic particle imaging

Magnetic Particle Imaging is capable of three-dimensional real-time imaging. Due to high spatial and temporal resolution, the method offers a great potential to be used in interventional scenarios. In this contribution, a design study integrating a single-sided coil assembly into a patient table is presented. An elliptical and an approximated elliptical coil topology are compared and proposed as alternatives to the commonly used circular shaped coils. Through this, the size of the field of view can be extended while not exceeding the lateral width of the patient table.

[1]  Thorsten M Buzug,et al.  Toward cardiovascular interventions guided by magnetic particle imaging: First instrument characterization , 2013, Magnetic resonance in medicine.

[2]  Kannan M Krishnan,et al.  Tracer design for magnetic particle imaging (invited). , 2012, Journal of applied physics.

[3]  Thorsten M. Buzug,et al.  Single-sided device for magnetic particle imaging , 2009 .

[4]  Bernhard Gleich,et al.  Magnetic Particle imaging : Visualization of Instruments for Cardiovascular Intervention 1 , 2012 .

[5]  W. Marsden I and J , 2012 .

[6]  Matthias Graeser,et al.  Magnetic particle imaging: introduction to imaging and hardware realization. , 2012, Zeitschrift fur medizinische Physik.

[7]  John B Weaver,et al.  Simulations of magnetic nanoparticle Brownian motion. , 2012, Journal of applied physics.

[8]  Thorsten M. Buzug,et al.  Efficient gradient field generation providing a multi-dimensional arbitrary shifted field-free point for magnetic particle imaging , 2014 .

[9]  K. Krishnan Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy , 2010, IEEE Transactions on Magnetics.

[10]  B Gleich,et al.  Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection , 2013, Physics in medicine and biology.

[11]  Lutz Trahms,et al.  How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance , 2011 .

[12]  B Gleich,et al.  Trajectory analysis for magnetic particle imaging , 2008, Physics in medicine and biology.

[13]  Jochen Franke,et al.  On the formulation of the image reconstruction problem in magnetic particle imaging , 2013, Biomedizinische Technik. Biomedical engineering.

[14]  Patrick W. Goodwill,et al.  Narrowband Magnetic Particle Imaging , 2009, IEEE Transactions on Medical Imaging.

[15]  M. Grüttner,et al.  Single-sided magnetic particle imaging: magnetic field and gradient , 2013, Medical Imaging.

[16]  Bo Zheng,et al.  An x-space magnetic particle imaging scanner. , 2012, The Review of scientific instruments.

[17]  Bernhard Gleich,et al.  Signal encoding in magnetic particle imaging: properties of the system function , 2009, BMC Medical Imaging.

[18]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[19]  Thorsten M. Buzug,et al.  Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation , 2012 .

[20]  Bernhard Gleich,et al.  Tomographic imaging using the nonlinear response of magnetic particles , 2005, Nature.

[21]  Patrick W. Goodwill,et al.  Multidimensional X-Space Magnetic Particle Imaging , 2011, IEEE Transactions on Medical Imaging.

[22]  T. M. Buzug,et al.  Approximated elliptical coils in magnetic particle imaging , 2013, 2013 International Workshop on Magnetic Particle Imaging (IWMPI).

[23]  Thorsten M. Buzug,et al.  Simulation of the magnetization dynamics of diluted ferrofluids in medical applications , 2013, Biomedizinische Technik. Biomedical engineering.