Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes.

Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.

[1]  Rahul Malik,et al.  Kinetics of non-equilibrium lithium incorporation in LiFePO4. , 2011, Nature materials.

[2]  L. S Etube Fracture Mechanics Analysis , 2014 .

[3]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[4]  D. F. Ogletree,et al.  Soft X-ray Microscopy and Spectroscopy at the Molecular Environmental Science Beamline at the Advanced Light Source , 2006 .

[5]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[6]  Takao Inoue,et al.  Effect of Electrode Parameters on LiFePO4 Cathodes , 2006 .

[7]  Martin Z. Bazant,et al.  Phase Transformation Dynamics in Porous Battery Electrodes , 2014, 1401.7072.

[8]  Todd R. Ferguson Lithium-ion battery modeling using non-equilibrium thermodynamics , 2014 .

[9]  T. Tyliszczak,et al.  High-resolution chemical analysis on cycled LiFePO4 battery electrodes using energy-filtered transmission electron microscopy , 2014 .

[10]  W. Craig Carter,et al.  Electrochemically Driven Phase Transitions in Insertion Electrodes for Lithium-Ion Batteries: Examples in Lithium Metal Phosphate Olivines , 2010 .

[11]  Yong‐Sheng Hu,et al.  Phase transformation and lithiation effect on electronic structure of Li(x)FePO4: an in-depth study by soft X-ray and simulations. , 2012, Journal of the American Chemical Society.

[12]  Wolfgang Dreyer,et al.  The thermodynamic origin of hysteresis in insertion batteries. , 2010, Nature materials.

[13]  Hsiao-Ying Shadow Huang,et al.  Strain Accommodation during Phase Transformations in Olivine‐Based Cathodes as a Materials Selection Criterion for High‐Power Rechargeable Batteries , 2007 .

[14]  Xiqian Yu,et al.  High rate delithiation behaviour of LiFePO4 studied by quick X-ray absorption spectroscopy. , 2012, Chemical communications.

[15]  Daniel A. Cogswell,et al.  Theory of coherent nucleation in phase-separating nanoparticles. , 2013, Nano letters.

[16]  John Newman,et al.  Stress generation and fracture in lithium insertion materials , 2005 .

[17]  Peng Bai,et al.  Charge transfer kinetics at the solid–solid interface in porous electrodes , 2014, Nature Communications.

[18]  Martin Z. Bazant,et al.  Particle-Level Modeling of the Charge-Discharge Behavior of Nanoparticulate Phase-Separating Li-Ion Battery Electrodes , 2013, 1309.6495.

[19]  Masao Yonemura,et al.  Room-temperature miscibility gap in LixFePO4 , 2006, Nature materials.

[20]  E. Anderson,et al.  Interferometer-controlled scanning transmission X-ray microscopes at the Advanced Light Source. , 2003, Journal of synchrotron radiation.

[21]  Y. Chiang,et al.  Extended solid solutions and coherent transformations in nanoscale olivine cathodes. , 2014, Nano letters.

[22]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .

[23]  C. Delmas,et al.  Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. , 2008, Nature materials.

[24]  Tsutomu Ohzuku,et al.  Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell , 1993 .

[25]  P. Novák,et al.  Memory effect in a lithium-ion battery. , 2013, Nature materials.

[26]  Daniel A. Cogswell,et al.  Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. , 2011, ACS nano.

[27]  Peng Bai,et al.  Statistical kinetics of phase-transforming nanoparticles in LiFePO4 porous electrodes , 2013 .

[28]  Montse Casas-Cabanas,et al.  Room-temperature single-phase Li insertion/extraction in nanoscale Li(x)FePO4. , 2008, Nature materials.

[29]  M. Whittingham,et al.  Why Substitution Enhances the Reactivity of LiFePO4 , 2013 .

[30]  Jonathan P. Wright,et al.  Rate-induced solubility and suppression of the first-order phase transition in olivine LiFePO4. , 2014, Nano letters.

[31]  W. Craig Carter,et al.  “Electrochemical Shock” of Intercalation Electrodes: A Fracture Mechanics Analysis , 2010 .

[32]  Steven Dargaville,et al.  Predicting Active Material Utilization in LiFePO4 Electrodes Using a Multiscale Mathematical Model , 2010 .

[33]  E. Favvas,et al.  What is spinodal decomposition , 2008 .

[34]  Martin Z. Bazant,et al.  Coherency Strain and the Kinetics of Phase Separation in LiFePO [subscript 4] , 2012 .

[35]  G. Ceder,et al.  Architecture Dependence on the Dynamics of Nano-LiFePO4 Electrodes , 2014 .

[36]  Daniel A. Cogswell,et al.  Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge. , 2011, Nano letters.

[37]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[38]  Venkat Srinivasan,et al.  Existence of path-dependence in the LiFePO4 electrode , 2006 .

[39]  Karena W. Chapman,et al.  Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes , 2014, Science.

[40]  Kyle R Fenton,et al.  Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping. , 2013, Nano letters.

[41]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[42]  W. Craig Carter,et al.  Size-Dependent Lithium Miscibility Gap in Nanoscale Li1 − x FePO4 , 2007 .

[43]  D. Aurbach,et al.  Collective Phase Transition Dynamics in Microarray Composite LixFePO4 Electrodes Tracked by in Situ Electrochemical Quartz Crystal Admittance , 2013 .

[44]  L. Nazar,et al.  Direct synthesis of nanocrystalline Li0.90FePO4: observation of phase segregation of anti-site defects on delithiation , 2011 .

[45]  E. F. Rauch,et al.  Confirmation of the domino-cascade model by lifepo4/fepo 4 precession electron diffraction , 2011 .

[46]  M. Behm,et al.  Electrochemical characterisation and modelling of the mass transport phenomena in LiPF6–EC–EMC electrolyte , 2008 .

[47]  Charles Delacourt,et al.  Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy , 2006 .

[48]  Marnix Wagemaker,et al.  Dynamic solubility limits in nanosized olivine LiFePO4. , 2011, Journal of the American Chemical Society.

[49]  Rahul Malik,et al.  A Critical Review of the Li Insertion Mechanisms in LiFePO4 Electrodes , 2013 .

[50]  Martin Z. Bazant,et al.  Nonequilibrium Thermodynamics of Porous Electrodes , 2012, 1204.2934.

[51]  T. Ohzuku,et al.  Topotactic Two-Phase Reactions of Li [ Ni1 / 2Mn3 / 2 ] O 4 ( P4332 ) in Nonaqueous Lithium Cells , 2004 .

[52]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[53]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[54]  J. Goodenough,et al.  Enhanced Charge-Transfer Kinetics by Anion Surface Modification of LiFePO4 , 2012 .

[55]  Martin Z Bazant,et al.  Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. , 2012, Accounts of chemical research.

[56]  J. Bernard,et al.  Simplified Electrochemical and Thermal Model of LiFePO4-Graphite Li-Ion Batteries for Fast Charge Applications , 2012 .

[57]  M. Gaberšček,et al.  Electrochemical kinetics of porous, carbon-decorated LiFePO4 cathodes: separation of wiring effects from solid state diffusion. , 2007, Physical chemistry chemical physics : PCCP.