Automatic data clustering using continuous action-set learning automata and its application in segmentation of images

Abstract Most of the proposed algorithms to solve the dynamic clustering problem are based on nature inspired meta-heuristic algorithms. In this paper a different reinforcement based optimization approach called continuous action-set learning automata (CALA) is used and a novel dynamic clustering approach called ACCALA is proposed. CALA is an optimization tool interacting with a random environment and learn the optimal action from the environment feedbacks. In this paper the dynamic clustering problem considered as a noisy optimization problem and the team of CALAs is used to solve this noisy optimization problem. To build such a team of CALAs this paper proposed a new representation of CALAs. Each automaton in this team uses its continuous action-set and defining a suitable action-set for each automaton has a great impact on the CALAs search behavior. In this paper we used the statistical property of data-sets and proposed a new method to automatically find an action-set for each automaton. The performance of ACCALA is evaluated and the results are compared with seven well-known automatic clustering techniques. Also ACCALA is used to perform automatic segmentation. The experimental results are promising and show that the proposed algorithm produced compact and well-separated clusters.

[1]  Alex Alves Freitas,et al.  A Survey of Evolutionary Algorithms for Clustering , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[2]  G. Panda,et al.  Automatic clustering using MOCLONAL for classifying actions of 3D human models , 2012, 2012 IEEE Symposium on Humanities, Science and Engineering Research.

[3]  Yee Leung,et al.  Clustering by Scale-Space Filtering , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Seyed-Hamid Zahiri,et al.  Learning automata based classifier , 2008, Pattern Recognit. Lett..

[5]  Sanghamitra Bandyopadhyay,et al.  A symmetry based multiobjective clustering technique for automatic evolution of clusters , 2010, Pattern Recognit..

[6]  Michalis Vazirgiannis,et al.  Clustering validity assessment: finding the optimal partitioning of a data set , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[7]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[8]  Michalis Vazirgiannis,et al.  On Clustering Validation Techniques , 2001, Journal of Intelligent Information Systems.

[9]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[10]  Joshua D. Knowles,et al.  Evolutionary Multiobjective Clustering , 2004, PPSN.

[11]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[12]  Hong He,et al.  A two-stage genetic algorithm for automatic clustering , 2012, Neurocomputing.

[13]  C. Vasseur,et al.  A strategy for controlling nonlinear systems using a learning automaton , 2000, Autom..

[14]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[15]  Ajith Abraham,et al.  Swarm Intelligence Algorithms for Data Clustering , 2008, Soft Computing for Knowledge Discovery and Data Mining.

[16]  Bijaya K. Panigrahi,et al.  Multi-objective optimization with artificial weed colonies , 2011, Inf. Sci..

[17]  Yangyang Li,et al.  Gene transposon based clone selection algorithm for automatic clustering , 2012, Inf. Sci..

[18]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[19]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[20]  Anil K. Jain,et al.  Large-scale parallel data clustering , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[21]  Timothy Gordon,et al.  Continuous action reinforcement learning automata and their application to adaptive digital filter design , 2001 .

[22]  Swagatam Das,et al.  Automatic Clustering Using an Improved Differential Evolution Algorithm , 2007 .

[23]  Kuo-Sheng Cheng,et al.  Evolution-Based Tabu Search Approach to Automatic Clustering , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[24]  Bassem Jarboui,et al.  Combinatorial particle swarm optimization (CPSO) for partitional clustering problem , 2007, Appl. Math. Comput..

[25]  Saeed Jalili,et al.  Dynamic clustering using combinatorial particle swarm optimization , 2012, Applied Intelligence.

[26]  Ching-Yi Chen,et al.  Alternative KPSO-Clustering Algorithm , 2005 .

[27]  Md Zahidul Islam,et al.  A hybrid clustering technique combining a novel genetic algorithm with K-Means , 2014, Knowl. Based Syst..

[28]  Sriparna Saha,et al.  A generalized automatic clustering algorithm in a multiobjective framework , 2013, Appl. Soft Comput..

[29]  Mehmet Celenk,et al.  A color clustering technique for image segmentation , 1990, Comput. Vis. Graph. Image Process..

[30]  Yimin Liu,et al.  Integrating Multi-Objective Genetic Algorithm and Validity Analysis for Locating and Ranking Alternative Clustering , 2005, Informatica.

[31]  Hamid Beigy,et al.  A new continuous action-set learning automaton for function optimization , 2006, J. Frankl. Inst..

[32]  Amit Konar,et al.  Metaheuristic Pattern Clustering – An Overview , 2009 .

[33]  Hazem M. Abbas,et al.  Neural networks for maximum likelihood clustering , 1994, Signal Process..

[34]  Sanghamitra Bandyopadhyay,et al.  A Point Symmetry-Based Clustering Technique for Automatic Evolution of Clusters , 2008, IEEE Transactions on Knowledge and Data Engineering.

[35]  P. S. Sastry,et al.  Varieties of learning automata: an overview , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[36]  Ujjwal Maulik,et al.  A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA , 2008, IEEE Transactions on Evolutionary Computation.

[37]  Kaddour Najim,et al.  Learning Automata: Theory and Applications , 1994 .

[38]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[39]  Andries Petrus Engelbrecht,et al.  Dynamic clustering using particle swarm optimization with application in image segmentation , 2006, Pattern Analysis and Applications.

[40]  Erik Valdemar Cuevas Jiménez,et al.  Seeking multi-thresholds for image segmentation with Learning Automata , 2011, Machine Vision and Applications.

[41]  Dinesh Kumar,et al.  Automatic cluster evolution using gravitational search algorithm and its application on image segmentation , 2014, Eng. Appl. Artif. Intell..

[42]  Kumpati S. Narendra,et al.  Learning automata - an introduction , 1989 .

[43]  P. S. Sastry,et al.  Continuous action set learning automata for stochastic optimization , 1994 .

[44]  Ganapati Panda,et al.  Automatic clustering algorithm based on multi-objective Immunized PSO to classify actions of 3D human models , 2013, Eng. Appl. Artif. Intell..

[45]  Ajith Abraham,et al.  A Bacterial Evolutionary Algorithm for automatic data clustering , 2009, 2009 IEEE Congress on Evolutionary Computation.

[46]  Wilfrido Gómez-Flores,et al.  Automatic clustering using nature-inspired metaheuristics: A survey , 2016, Appl. Soft Comput..

[47]  Erik K. Antonsson,et al.  Dynamic partitional clustering using evolution strategies , 2000, 2000 26th Annual Conference of the IEEE Industrial Electronics Society. IECON 2000. 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation. 21st Century Technologies.

[48]  Ujjwal Maulik,et al.  A new line symmetry distance based automatic clustering technique: Application to image segmentation , 2011, Int. J. Imaging Syst. Technol..

[49]  Licheng Jiao,et al.  Dynamic local search based immune automatic clustering algorithm and its applications , 2015, Appl. Soft Comput..

[50]  Ujjwal Maulik,et al.  Genetic clustering for automatic evolution of clusters and application to image classification , 2002, Pattern Recognit..

[51]  Ganapati Panda,et al.  A survey on nature inspired metaheuristic algorithms for partitional clustering , 2014, Swarm Evol. Comput..

[52]  Amit Konar,et al.  Automatic kernel clustering with a Multi-Elitist Particle Swarm Optimization Algorithm , 2008, Pattern Recognit. Lett..

[53]  Hichem Frigui,et al.  A Robust Competitive Clustering Algorithm With Applications in Computer Vision , 1999, IEEE Trans. Pattern Anal. Mach. Intell..