A Random Attention Model

This paper illustrates how one can deduce preference from observed choices when attention is both limited and random. We introduce a random attention model where we abstain from any particular attention formation and instead consider a large class of nonparametric random attention rules. Our intuitive condition, monotonic attention, captures the idea that each consideration set competes for the decision maker’s attention. We then develop a revealed preference theory and obtain testable implications. We propose econometric methods for identification, estimation, and inference for the revealed preferences. Finally, we provide a general-purpose software implementation of our estimation and inference results and simulation evidence.

[1]  Levon Barseghyan,et al.  Heterogeneous choice sets and preferences , 2019, Econometrica.

[2]  Kosuke Uetake,et al.  Identifying Consumer Inattention: A Product-Availability Approach , 2016 .

[3]  T. A. Hurly,et al.  Context–dependent foraging decisions in rufous hummingbirds , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[4]  Jerome R. Busemeyer,et al.  Psychological research and theories on preferential choice , 2014 .

[5]  Charles F. Manski,et al.  Partial Identification in Econometrics , 2010 .

[6]  Christopher P. Puto,et al.  Adding Asymmetrically Dominated Alternatives: Violations of Regularity & the Similarity Hypothesis. , 1981 .

[7]  J. Busemeyer,et al.  Extending the Bounds of Rationality: Evidence and Theories of Preferential Choice , 2006 .

[8]  Alonso Ahumada,et al.  Luce Rule with Limited Consideration , 2017, Math. Soc. Sci..

[9]  Victor Chernozhukov,et al.  Testing Many Moment Inequalities , 2013 .

[10]  W. Newey,et al.  Constrained Conditional Moment Restriction Models , 2015, Econometrica.

[11]  P. Fishburn Binary choice probabilities: on the varieties of stochastic transitivity , 1973 .

[12]  Faruk Gul,et al.  Random Choice as Behavioral Optimization , 2014 .

[13]  W. Newey,et al.  Nonparametric Welfare Analysis , 2017 .

[14]  F. Echenique,et al.  General Luce model , 2018, Economic Theory.

[15]  Michel Wedel,et al.  Retrieving Unobserved Consideration Sets from Household Panel Data , 2005 .

[16]  S. Shafir,et al.  Context-dependent violations of rational choice in honeybees (Apis mellifera) and gray jays (Perisoreus canadensis) , 2001, Behavioral Ecology and Sociobiology.

[17]  Kate Ho,et al.  Partial Identification in Applied Research: Benefits and Challenges , 2015 .

[18]  Christopher J. Tyson,et al.  Inferring Cognitive Heterogeneity From Aggregate Choices , 2020, Econometrica.

[19]  Kohei Kawaguchi Testing rationality without restricting heterogeneity , 2017 .

[20]  M. S. Goeree,et al.  LIMITED INFORMATION AND ADVERTISING IN THE U.S. PERSONAL COMPUTER INDUSTRY , 2008 .

[21]  D. Andrews,et al.  Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection , 2007 .

[22]  Mark Dean,et al.  Satisficing and stochastic choice , 2016, J. Econ. Theory.

[23]  Andrés Santos,et al.  Inference on Directionally Differentiable Functions , 2014, The Review of Economic Studies.

[24]  A. Tversky Intransitivity of preferences. , 1969 .

[25]  Paola Manzini,et al.  Stochastic Choice and Consideration Sets , 2012, SSRN Electronic Journal.

[26]  Yusufcan Masatlioglu,et al.  Limited Attention and Status Quo Bias , 2014 .

[27]  Charles F. Manski,et al.  Confidence Intervals for Partially Identified Parameters , 2003 .

[28]  Patrik Guggenberger,et al.  VALIDITY OF SUBSAMPLING AND “PLUG-IN ASYMPTOTIC” INFERENCE FOR PARAMETERS DEFINED BY MOMENT INEQUALITIES , 2007, Econometric Theory.

[29]  Rosa L. Matzkin,et al.  Bounding quantile demand functions using revealed preference inequalities , 2011 .

[30]  Ivan A. Canay,et al.  Practical and theoretical advances in inference for partially identified models , 2016 .

[31]  Victor H. Aguiar,et al.  Random Categorization and Bounded Rationality , 2016 .

[32]  Kota Saito,et al.  The perception-adjusted Luce model , 2018, Math. Soc. Sci..

[33]  C. Manski Anatomy of the Selection Problem , 1989 .

[34]  Jason Abaluck,et al.  What Do Consumers Consider Before They Choose? Identification from Asymmetric Demand Responses , 2017, The Quarterly Journal of Economics.

[35]  Marcel G. Dagenais,et al.  The dogit model , 1979 .

[36]  Francesca Molinari Econometrics with Partial Identification , 2019 .

[37]  Pietro Ortoleva,et al.  Stochastic Choice and Preferences for Randomization , 2015, Journal of Political Economy.

[38]  Kengo Kato,et al.  Inference on Causal and Structural Parameters using Many Moment Inequalities , 2013, The Review of Economic Studies.

[39]  Joseph P. Romano,et al.  A Practical Two-Step Method for Testing Moment Inequalities , 2014 .

[40]  Xiaoxia Shi,et al.  Specification tests for partially identified models defined by moment inequalities , 2013 .

[41]  R. Nagel,et al.  Search Dynamics in Consumer Choice under Time Pressure: An Eye-Tracking Study , 2011 .

[42]  Erkut Y. Ozbay,et al.  Revealed Attention , 2009 .

[43]  Yuval Salant,et al.  c ○ 2008 The Review of Economic Studies Limited (A, f): Choice with Frames 1 , 2007 .

[44]  B. Wernerfelt,et al.  An Evaluation Cost Model of Consideration Sets , 1990 .

[45]  Victor H. Aguiar Stochastic Choice and Attention Capacities: Inferring Preferences from Psychological Biases , 2015 .

[46]  H. Houthakker Revealed Preference and the Utility Function , 1950 .

[47]  Drew Fudenberg,et al.  Stochastic Choice and Revealed Perturbed Utility , 2015 .

[48]  Federico A. Bugni A Comparison of Inferential Methods in Partially Identified Models in Terms of Error in the Coverage Probability , 2011 .

[49]  Yuichi Kitamura,et al.  Nonparametric Analysis of Random Utility Models , 2016, 1606.04819.

[50]  S. Barberà,et al.  Preference for Flexibility and the Opportunities of Choice , 2011 .

[51]  R. Deb,et al.  Revealed Price Preference: Theory and Stochastic Testing , 2017 .

[52]  Francesca Molinari,et al.  Confidence Intervals for Projections of Partially Identified Parameters , 2016, Econometrica.

[53]  H. Simon,et al.  A Behavioral Model of Rational Choice , 1955 .

[54]  A. Pakes,et al.  Moment Inequalities and Their Application , 2015 .

[55]  Ivan A. Canay EL inference for partially identified models: Large deviations optimality and bootstrap validity , 2010 .

[56]  Rosa L. Matzkin Nonparametric Identification in Structural Economic Models , 2013 .

[57]  John Rehbeck,et al.  Menu‐Dependent Stochastic Feasibility , 2016 .

[58]  Sean Horan,et al.  Random consideration and choice: A case study of "default" options , 2019, Math. Soc. Sci..

[59]  Mark Dean,et al.  Limited Attention and Status Quo Bias , 2014, J. Econ. Theory.

[60]  Yusufcan Masatlioglu,et al.  When more is less: Limited consideration , 2017, J. Econ. Theory.

[61]  Kareen Rozen,et al.  Bounded Rationality and Limited Datasets , 2014 .