Aircraft Ignition Kernel Characterization by X-ray Radiography

[1]  Jerry M. Seitzman,et al.  Simulation of Gas Turbine Ignition Using Large Eddy Simulation Approach , 2018, Volume 4B: Combustion, Fuels, and Emissions.

[2]  J. Als-Nielsen,et al.  Elements of Modern X-ray Physics: Als-Nielsen/Elements , 2011 .

[3]  E. Corporan,et al.  Lean Blowout and Ignition Characteristics of Conventional and Surrogate Fuels Measured in a Swirl Stabilized Combustor , 2017 .

[4]  A. Kastengren,et al.  Time-Resolved X-Ray Radiography of Spark Ignition Plasma , 2016 .

[5]  Christopher F. Powell,et al.  The 7BM beamline at the APS: a facility for time-resolved fluid dynamics measurements , 2012, Journal of synchrotron radiation.

[6]  Brandon Sforzo,et al.  Post discharge evolution of a spark igniter kernel , 2015 .

[7]  Brandon Sforzo,et al.  Ignition Probability in a Stratified Turbulent Flow With a Sunken Fire Igniter , 2014 .

[8]  A. Kastengren,et al.  Synchrotron X-ray techniques for fluid dynamics , 2014 .

[9]  X-Ray Radiography Measurements of the Thermal Energy in Spark Ignition Plasma at Variable Ambient Conditions , 2017 .

[10]  R. Maly,et al.  Initiation and propagation of flame fronts in lean CH4-air mixtures by the three modes of the ignition spark , 1979 .

[11]  D. R. Ballal,et al.  The influence of spark discharge characteristics on minimum ignition energy in flowing gases , 1975 .

[12]  P. Kirkpatrick,et al.  Formation of optical images by X-rays. , 1948, Journal of the Optical Society of America.

[13]  J. Hermanson,et al.  Penetration and Mixing of Fully Modulated Turbulent Jets in Crossflow , 1999 .

[14]  J. Seitzman,et al.  Numerical study of the ignition behavior of a post-discharge kernel in a turbulent stratified crossflow , 2019, Proceedings of the Combustion Institute.

[15]  D. Knight,et al.  Laser Energy Deposition in Quiescent Air , 2003 .