Implicit-explicit schemes for nonlinear consolidation

Abstract A general analytical procedure capable of performing linear and nonlinear consolidation analysis of saturated porous media is proposed. A brief review of the coupled field equations is included and the constitutive assumptions are stated explicitly. Time integration of the resulting nonlinear semidiscrete finite element equations is performed by using an implicit/explicit predictor/multicorrector scheme developed by Hughes and co-workers. It is shown that the algorithm can be simply and concisely implemented. The technique allows for a convenient selection of implicit and explicit elements, and for a convenient implicit-explicit split of the various operators appearing in the equations. The procedure proves to be extremely effective in dealing with consolidation problems. Numerical results which demonstrate the versatility and accuracy of the proposed procedures are presented.

[1]  M. Biot THEORY OF ELASTICITY AND CONSOLIDATION FOR A POROUS ANISOTROPIC SOLID , 1955 .

[2]  Ronald F. Scott,et al.  Principles of soil mechanics , 1963 .

[3]  Roland W. Lewis,et al.  A comparison of time marching schemes for the transient heat conduction equation , 1975 .

[4]  P. M. Naghdi,et al.  A Dynamical theory of interacting continua , 1965 .

[5]  J. Mandel Consolidation Des Sols (Étude Mathématique) , 1953 .

[6]  Chiang C. Mei,et al.  Wave-induced responses in a fluid-filled poro-elastic solid with a free surface : A boundary layer theory , 1981 .

[7]  O. C. Zienkiewicz,et al.  DRAINED, UNDRAINED, CONSOLIDATING AND DYNAMIC BEHAVIOUR ASSUMPTIONS IN SOILS , 1980 .

[8]  J. Prévost Nonlinear transient phenomena in saturated porous media , 1982 .

[9]  Jean H. Prevost,et al.  PLASTICITY THEORY FOR SOIL STRESS-STRAIN BEHAVIOR , 1978 .

[10]  K. Terzaghi Theoretical Soil Mechanics , 1943 .

[11]  Thomas J. R. Hughes,et al.  Consistent linearization in mechanics of solids and structures , 1978 .

[12]  J. C. Small,et al.  Elasto-plastic consolidation of soil , 1976 .

[13]  Chandrakant S. Desai,et al.  Two numerical schemes for nonlinear consolidation , 1981 .

[14]  J. Prévost Mechanics of continuous porous media , 1980 .

[15]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[16]  E. Wilson,et al.  Flow of compressible fluid in porous elastic media , 1973 .

[17]  Jean H. Prevost Consolidation of Anelastic Porous Media , 1981 .

[18]  Edward L. Wilson,et al.  Numerical methods in finite element analysis , 1976 .

[19]  John D. Ingram,et al.  A Continuum theory of chemically reacting media—I , 1965 .

[20]  R. Hill The mathematical theory of plasticity , 1950 .

[21]  J. C. Small,et al.  The analysis of finite elasto-plastic consolidation , 1979 .

[22]  J. C. Small,et al.  A THEORY OF FINITE ELASTIC CONSOLIDATION , 1977 .

[23]  J. Z. Zhu,et al.  The finite element method , 1977 .

[24]  R. Hill A general theory of uniqueness and stability in elastic-plastic solids , 1958 .

[25]  M. Biot MECHANICS OF DEFORMATION AND ACOUSTIC PROPAGATION IN POROUS MEDIA , 1962 .

[26]  E. Wilson,et al.  FINITE-ELEMENT ANALYSIS OF SEEPAGE IN ELASTIC MEDIA , 1969 .

[27]  Chandrakant S. Desai,et al.  Consolidation analysis of layered anisotropic foundations , 1977 .

[28]  M. Biot Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐Frequency Range , 1956 .

[29]  Thomas J. R. Hughes,et al.  Unconditionally stable algorithms for nonlinear heat conduction , 1977 .

[30]  Thomas J. R. Hughes,et al.  Finite-Element Solution of Elastic-Plastic Boundary-Value Problems , 1981 .

[31]  Thomas J. R. Hughes,et al.  Implicit-explicit finite elements in nonlinear transient analysis , 1979 .

[32]  C. Cryer,et al.  A COMPARISON OF THE THREE-DIMENSIONAL CONSOLIDATION THEORIES OF BIOT AND TERZAGHI , 1963 .