New simulants for martian regolith: Controlling iron variability

[1]  M. D.,et al.  The Soil , 2019, Nature.

[2]  J. Grant,et al.  Sand Grain Sizes and Shapes in Eolian Bedforms at Gale Crater, Mars , 2018, Geophysical Research Letters.

[3]  H. Moors,et al.  A physico-chemical and geo-microbiological study of ten different lakes located in the Danakil depression , 2018 .

[4]  L. Duvet,et al.  The European Space Agency Exploration Sample Analogue Collection (ESA2C) and Curation Facility - present and future , 2018 .

[5]  Trent M. Smith,et al.  Mars global simulant MGS-1: A Rocknest-based open standard for basaltic martian regolith simulants , 2018, Icarus.

[6]  D. Ming,et al.  Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars , 2018, Science Advances.

[7]  C. Cockell,et al.  Y‐Mars: An Astrobiological Analogue of Martian Mudstone , 2018 .

[8]  R. Wiens,et al.  Basalt–trachybasalt samples in Gale Crater, Mars , 2017 .

[9]  K. Olsson-Francis,et al.  Determination of Geochemical Bio-Signatures in Mars-Like Basaltic Environments , 2017, Front. Microbiol..

[10]  J. Filiberto GEOCHEMISTRY OF MARTIAN BASALTS WITH CONSTRAINTS ON MAGMA GENESIS , 2017 .

[11]  MedinaJesús,et al.  The Raman Laser Spectrometer for the ExoMars Rover Mission to Mars , 2017 .

[12]  G. Horneck,et al.  BIOMEX Experiment: Ultrastructural Alterations, Molecular Damage and Survival of the Fungus Cryomyces antarcticus after the Experiment Verification Tests , 2016, Origins of Life and Evolution of Biospheres.

[13]  J. Bridges,et al.  Diagenesis on Mars: insights into noble gas pathways and newly formed mineral assemblages from long term experiments , 2017 .

[14]  A. Scott,et al.  Development of a Martian regolith simulant for in-situ resource utilization testing , 2017 .

[15]  J. Bishop,et al.  Evidence for a changing Martian climate from the mineralogy at Mawrth Vallis , 2016 .

[16]  R. Wiens,et al.  Fluids during diagenesis and sulfate vein formation in sediments at Gale crater, Mars , 2016 .

[17]  Trevor G. Graff,et al.  Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater , 2016, Proceedings of the National Academy of Sciences.

[18]  N. Mangold,et al.  Mineralogical record of the redox conditions on early Mars , 2016 .

[19]  E. Rabbow,et al.  Preservation of Biomarkers from Cyanobacteria Mixed with Mars­Like Regolith Under Simulated Martian Atmosphere and UV Flux , 2016, Origins of Life and Evolution of Biospheres.

[20]  C. Schröder,et al.  The biogeochemical iron cycle and astrobiology , 2016 .

[21]  Paul Mann,et al.  The Canadian space agency planetary analogue materials suite , 2015 .

[22]  R. Frost,et al.  Raman spectroscopy of pyrite in marble from Chillagoe, Queensland , 2015 .

[23]  Xiongyao Li,et al.  JMSS-1: a new Martian soil simulant , 2015, Earth, Planets and Space.

[24]  A. McEwen,et al.  Transient liquid water and water activity at Gale crater on Mars , 2015 .

[25]  M. Alawi,et al.  Influence of Martian regolith analogs on the activity and growth of methanogenic archaea, with special regard to long-term desiccation , 2015, Front. Microbiol..

[26]  Jean-Pierre Bibring,et al.  Widespread surface weathering on early Mars: A case for a warmer and wetter climate , 2015 .

[27]  John Bridges,et al.  Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars , 2014 .

[28]  R. Amils,et al.  Río Tinto: A Geochemical and Mineralogical Terrestrial Analogue of Mars , 2014, Life.

[29]  P. Rettberg,et al.  Growth of the acidophilic iron–sulfur bacterium Acidithiobacillus ferrooxidans under Mars-like geochemical conditions , 2014 .

[30]  L. Gaddis,et al.  Hematite-bearing materials surrounding Candor Mensa in Candor Chasma, Mars: Implications for hematite origin and post-emplacement modification , 2014 .

[31]  S. McLennan,et al.  Geochemical constraints on the presence of clay minerals in the Burns formation, Meridiani Planum, Mars , 2014 .

[32]  B. Ehlmann,et al.  Mineralogy of the Martian Surface , 2014 .

[33]  R. V. Morris,et al.  Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[34]  A. Yingst,et al.  A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[35]  D. Ming,et al.  Geochemical diversity in first rocks examined by the Curiosity Rover in Gale Crater: Evidence for and significance of an alkali and volatile‐rich igneous source , 2014 .

[36]  S. Murchie,et al.  A hematite-bearing layer in Gale Crater, Mars: Mapping and implications for past aqueous conditions , 2013 .

[37]  R. V. Morris,et al.  Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow , 2013, Science.

[38]  Frances Westall,et al.  Missions to Mars: Characterization of Mars analogue rocks for the International Space Analogue Rockstore (ISAR) , 2013 .

[39]  Jean-Pierre Bibring,et al.  Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view , 2013 .

[40]  S. Squyres,et al.  Initial MSL APXS Activities and Observations at Gale Crater, Mars , 2013 .

[41]  Claire R. Cousins,et al.  Plausible microbial metabolisms on Mars , 2013 .

[42]  J. Bridges,et al.  The nakhlite hydrothermal brine on Mars , 2012 .

[43]  Andrew C. Schuerger,et al.  Biotoxicity of Mars soils: 1. Dry deposition of analog soils on microbial colonies and survival under Martian conditions , 2012 .

[44]  Chakravarthini M. Saaj,et al.  The development of a soil trafficability model for legged vehicles on granular soils , 2012 .

[45]  R. E. Arvidson,et al.  Ancient Impact and Aqueous Processes at Endeavour Crater, Mars , 2012, Science.

[46]  Nildeep M Patel,et al.  Characterisation of martian soil simulants for the ExoMars rover testbed , 2011 .

[47]  Hugo Thienpont,et al.  Using Raman spectroscopy as a tool for the detection of iron in glass , 2011 .

[48]  A. Colaprete,et al.  Water ice nucleation characteristics of JSC Mars‐1 regolith simulant under simulated Martian atmospheric conditions , 2011 .

[49]  T. Kral,et al.  Approaching Mars-like geochemical conditions in the laboratory: omission of artificial buffers and reductants in a study of biogenic methane production on a smectite clay. , 2010, Astrobiology.

[50]  F. Seelos,et al.  Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars , 2010 .

[51]  James W. Head,et al.  Geologic history of Mars , 2010 .

[52]  A. McEwen,et al.  Phyllosilicates and sulfates at Endeavour Crater, Meridiani Planum, Mars , 2009 .

[53]  Chakravarthini M. Saaj,et al.  Measuring and Simulating the Effect of Variations in Soil Properties on Microrover Trafficability , 2009 .

[54]  P. Frey-Klett,et al.  Mineral weathering by bacteria: ecology, actors and mechanisms. , 2009, Trends in microbiology.

[55]  S. S. Rout,et al.  Spectral properties of simulated impact glasses produced from martian soil analogue JSC Mars-1 , 2009 .

[56]  Harry Y. McSween,et al.  Elemental Composition of the Martian Crust , 2009, Science.

[57]  Per Nornberg,et al.  Salten Skov I: A Martian magnetic dust analogue , 2009 .

[58]  Raymond E. Arvidson,et al.  A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter , 2009 .

[59]  D. Ming,et al.  Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover , 2008 .

[60]  B. Jolliff,et al.  CHARACTERIZATION OF NATURAL FELDSPARS BY RAMAN SPECTROSCOPY FOR FUTURE PLANETARY EXPLORATION , 2008 .

[61]  Günter Kargl,et al.  Simulating Martian regolith in the laboratory , 2008 .

[62]  Jeffrey R. Johnson,et al.  Hematite spherules at Meridiani: results from MI, Mini-TES, and Pancam , 2008 .

[63]  Luther W. Beegle,et al.  Mojave Mars simulant—Characterization of a new geologic Mars analog , 2008 .

[64]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[65]  Jeffrey R. Johnson,et al.  Hydrothermal processes at Gusev Crater: An evaluation of Paso Robles class soils , 2008 .

[66]  Rongxing Li,et al.  Soil sedimentology at Gusev Crater from Columbia Memorial Station to Winter Haven , 2008 .

[67]  J. Bishop,et al.  Mineralogy of the Paso Robles soils on Mars , 2008 .

[68]  Takashi Mouri,et al.  Raman spectroscopic study of olivine-group minerals , 2008 .

[69]  C. Weitz,et al.  Gray hematite distribution and formation in Ophir and Candor chasmata , 2008 .

[70]  Patrick Pinet,et al.  Martian surface mineralogy from Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps , 2007 .

[71]  A. Jacobson,et al.  Characterization of elemental release during microbe–granite interactions at T = 28 °C , 2007 .

[72]  C. B. Farmer,et al.  Water vapor diffusion in Mars subsurface environments , 2007 .

[73]  B. Jolliff,et al.  Extracting olivine (Fo–Fa) compositions from Raman spectral peak positions , 2006 .

[74]  Jeffrey R. Johnson,et al.  Soil grain analyses at Meridiani Planum, Mars , 2006 .

[75]  A. Jacobson,et al.  Characterization of elemental release during microbe-basalt interactions , 2006 .

[76]  Raymond E. Arvidson,et al.  Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits , 2006 .

[77]  James Garry,et al.  Analysis and survival of amino acids in Martian regolith analogs , 2006 .

[78]  J. Bridges,et al.  The SNC meteorites: basaltic igneous processes on Mars , 2006, Journal of the Geological Society.

[79]  K. Herkenhoff,et al.  Sulfate deposition in subsurface regolith in Gusev crater, Mars , 2006 .

[80]  Steven W. Squyres,et al.  Alpha Particle X‐Ray Spectrometer (APXS): Results from Gusev crater and calibration report , 2006 .

[81]  D. Ming,et al.  Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .

[82]  William H. Farrand,et al.  Chemistry and mineralogy of outcrops at Meridiani Planum , 2005 .

[83]  Amitabha Ghosh,et al.  An integrated view of the chemistry and mineralogy of martian soils , 2005, Nature.

[84]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[85]  Y. Langevin,et al.  Olivine and Pyroxene Diversity in the Crust of Mars , 2005, Science.

[86]  R. Rieder,et al.  Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.

[87]  Jeffrey R. Johnson,et al.  Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site , 2004, Science.

[88]  U. Bonnes,et al.  Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer , 2004, Science.

[89]  R. Rieder,et al.  Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer , 2004, Science.

[90]  D. Ming,et al.  Mineralogy at Gusev Crater from the Mössbauer Spectrometer on the Spirit Rover , 2004, Science.

[91]  R E Arvidson,et al.  Basaltic rocks analyzed by the Spirit Rover in Gusev Crater. , 2004, Science.

[92]  Christopher P. McKay,et al.  Growth of Methanogens on a Mars Soil Simulant , 2004, Origins of life and evolution of the biosphere.

[93]  U. Schwertmann,et al.  Mineralogy of a burned soil compared with four anomalously red Quaternary deposits in Denmark , 2004, Clay Minerals.

[94]  R. Clayton,et al.  Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer , 2003 .

[95]  P. Christensen,et al.  Searching for the source regions of martian meteorites using MGS TES: Integrating martian meteorites into the global distribution of igneous materials on Mars , 2003 .

[96]  R. Arvidson,et al.  Geologic setting and origin of Terra Meridiani hematite deposit on Mars , 2002 .

[97]  P. Coste,et al.  Development and testing of subsurface sampling devices for the Beagle 2 lander , 2002 .

[98]  C. Calle,et al.  JSC Mars-1 Martian Regolith simulant particle charging experiments in a low pressure environment , 2001 .

[99]  Rudolf Rieder,et al.  Chemical Composition of Rocks and Soils at the Pathfinder Site , 2001 .

[100]  R. Clark,et al.  Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evide , 2000 .

[101]  C.-H. Chen,et al.  Raman spectroscopic characteristics of Mg-Fe-Ca pyroxenes , 2000 .

[102]  S. Wood,et al.  Experimental hydrothermal alteration of a martian analog basalt: Implications for martian meteorites , 2000 .

[103]  N. Imai,et al.  1998 Compilation of Analytical Data for Five GSJ Geochemical Reference Samples: The “Instrumental Analysis Series” , 1999 .

[104]  Richard V. Morris,et al.  Martian soil simulant available for scientific, educational study , 1998 .

[105]  Karen M. Jager,et al.  Martian Regolith Simulant JSC Mars-1 , 1998 .

[106]  H. J. Moore,et al.  Overview of the Mars Pathfinder mission and assessment of landing site predictions. , 1997, Science.

[107]  Richard V. Morris,et al.  JSC Mars-1 - Martian regolith simulant , 1997 .

[108]  N. Imai,et al.  1996 COMPILATION OF ANALYTICAL DATA ON NINE GSJ GEOCHEMICAL REFERENCE SAMPLES, “SEDIMENTARY ROCK SERIES” , 1996 .

[109]  Atsushi Ando,et al.  1994 compilation of analytical data for minor and trace elements in seventeen GSJ geochemical reference samples, "Igneous rock series" , 1995 .

[110]  K. Govindaraju,et al.  1994 REPORT ON ZINNWALDITE ZW‐C ANALYSED BY NINETY‐TWO GIT‐IWG MEMBER‐LABORATORIES , 1994 .

[111]  S. Murchie,et al.  An Unusual Spectral Unit in West Candor Chasma: Evidence for Aqueous or Hydrothermal Alteration in the Martian Canyons , 1993 .

[112]  D. Rancourt,et al.  Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy , 1991 .

[113]  H. J. Moore,et al.  Viking landing sites, remote-sensing observations, and physical properties of Martian surface materials , 1989 .

[114]  Klaus Keil,et al.  Geochemical and mineralogical interpretation of the Viking inorganic chemical results , 1977 .

[115]  A. K. Baird,et al.  Inorganic Analyses of Martian Surface Samples at the Viking Landing Sites , 1976, Science.

[116]  H. J. Moore,et al.  The "Soil" of Mars (Viking 1) , 1976, Science.

[117]  S. Nockolds AVERAGE CHEMICAL COMPOSITIONS OF SOME IGNEOUS ROCKS , 1954 .

[118]  M. C. Powers A New Roundness Scale for Sedimentary Particles , 1953 .

[119]  P. King,et al.  Sulfur on Mars from the Atmosphere to the Core , 2019, Volatiles in the Martian Crust.

[120]  Robert T. Downs,et al.  The power of databases: The RRUFF project , 2016 .

[121]  Cin-Ty A. Lee,et al.  New bulk sulfur measurements of Martian meteorites and modeling the fate of sulfur during melting and crystallization – Implications for sulfur transfer from Martian mantle to crust–atmosphere system , 2015 .

[122]  J. Grotzinger Crater, Mars A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale , 2014 .

[123]  Heinz-Wilhelm Hübers,et al.  Optimizing the detection of carotene in cyanobacteria in a martian regolith analogue with a Raman spectrometer for the ExoMars mission , 2012 .

[124]  Cary R. Spitzer,et al.  Physical properties of the surface materials at the Viking landing sites on Mars , 1987 .

[125]  Lorraine Schnabel,et al.  Chemical composition of Martian fines , 1982 .

[126]  R. Howie,et al.  An Introduction to the Rock-Forming Minerals , 1966 .