Insights into metastability of photovoltaic materials at the mesoscale through massive I–V analytics

The authors demonstrate the feasibility of quantifying cell-level performance heterogeneity from module-level I–V curves by determining conditions of bypass diode turn-on. Analysis of these curves falls outside of typical diode-based models of photovoltaic (PV) performance. The authors show that this approach can leverage statistical and machine learning techniques for broad application to massive datasets, and combine those insights with simulations and laboratory-based experiments to provide useful information into the metastability of the interfaces of a PV cell. The authors find good agreement between the experimentally determined curves and the simulated curves, which guide the variable selection in the massive dataset collected from sites in Cleveland, OH, USA, the Negev Desert, Israel, Isla Gran Canaria, Spain, and Mount Zugspitze, Germany.

[1]  A. F. Carroll,et al.  Front-side Ag contacts enabling superior recombination and fine-line performance , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[2]  Trevor Hastie,et al.  An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.

[3]  Ralf Preu,et al.  Series resistance characterization of industrial silicon solar cells with screen‐printed contacts using hotmelt paste , 2007 .

[4]  Thomas Basso,et al.  Cell shunt resistance and photovoltaic module performance , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[5]  A. Kapoor,et al.  Solar cell array parameters using Lambert W-function , 2006 .

[6]  Z. Li,et al.  Microstructural comparison of silicon solar cells’ front-side Ag contact and the evolution of current conduction mechanisms , 2011 .

[7]  Laura S. Bruckman,et al.  Degradation science: Mesoscopic evolution and temporal analytics of photovoltaic energy materials , 2015 .

[8]  M. Chegaar,et al.  Solar cells parameters evaluation considering the series and shunt resistance , 2007 .

[9]  Mohsen Taherbaneh,et al.  Evaluation the Accuracy of One-Diode and Two-Diode Models for a Solar Panel Based Open-Air Climate Measurements , 2011 .

[10]  Giuseppe Marco Tina,et al.  Comparison of different metaheuristic algorithms for parameter identification of photovoltaic cell/module , 2013 .

[11]  Thorsten Dullweber,et al.  Fineline Printing Options for High Efficiencies and Low Ag Paste Consumption , 2013 .

[12]  Pinar Mert Cuce,et al.  An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters , 2013 .

[13]  Sukhvir Singh,et al.  A new method of determination of series and shunt resistances of silicon solar cells , 2007 .

[14]  Firoz Khan,et al.  Effect of illumination intensity on cell parameters of a silicon solar cell , 2010 .

[15]  Jiayang Sun,et al.  Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science , 2013, IEEE Access.

[16]  Ganesh K. Venayagamoorthy,et al.  Comparison of a recurrent neural network PV system model with a traditional component-based PV system model , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[17]  Roger H. French,et al.  Mirror augmented photovoltaics and time series analytics of the I–V curve parameters , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[18]  Steve Ransome,et al.  Understanding PV Module Performance: Further Validation of the Novel Loss Factors Model and Its Extension to AC Arrays , 2012 .

[19]  A. Hovinen Fitting of the solar cell IV-curve to the two diode model , 1994 .

[20]  R. Teodorescu,et al.  Robust series resistance estimation for diagnostics of photovoltaic modules , 2009, 2009 35th Annual Conference of IEEE Industrial Electronics.

[21]  Kashif Ishaque,et al.  An improved two-diode photovoltaic (PV) model for PV system , 2010, 2010 Joint International Conference on Power Electronics, Drives and Energy Systems & 2010 Power India.

[22]  H. Shalaby,et al.  Assessing corrosion problems in photovoltaic cells via electrochemical stress testing , 1985 .

[23]  S. Eidelloth,et al.  Simulation Tool for Equivalent Circuit Modeling of Photovoltaic Devices , 2012, IEEE Journal of Photovoltaics.

[24]  John L. Sarrao,et al.  Opportunities for mesoscale science , 2012 .

[25]  Clifford W. Hansen,et al.  Outdoor PV Performance Evaluation of Three Different Models: Single-Diode, SAPM and Loss Factor Model , 2013 .

[26]  Roger H. French,et al.  Thin Glass Film between Ultrafine Conductor Particles in Thick-Film Resistors , 1994 .

[27]  Laura S. Bruckman,et al.  Design Considerations and Measured Performance of Nontracked Mirror-Augmented Photovoltaics , 2015, IEEE Journal of Photovoltaics.

[28]  M. Bashahu,et al.  Review and tests of methods for the determination of the solar cell junction ideality factors , 2007 .

[29]  William A. Beckman,et al.  Improvement and validation of a model for photovoltaic array performance , 2006 .

[30]  Ajeet Rohatgi,et al.  Investigation of the Mechanism Resulting in low Resistance Ag Thick-Film Contact to Si Solar Cells in the Context of Emitter Doping Density and Contact Firing for Current-Generation Ag Paste , 2014, IEEE Journal of Photovoltaics.

[31]  M. Vitelli,et al.  Analytical model of mismatched photovoltaic fields by means of Lambert W-function , 2007 .

[32]  Santiago Silvestre,et al.  Modelling Photovoltaic Systems Using PSpice®: Castaner/Modelling Photovoltaic Systems Using PSpice , 2006 .

[33]  F. Ghani,et al.  Numerical calculation of series and shunt resistances and diode quality factor of a photovoltaic cell using the Lambert W-function , 2013 .

[34]  M. Heck,et al.  Modeling of the nominal operating cell temperature based on outdoor weathering , 2011 .

[35]  E. J. Kossen,et al.  Comparison of two step printing methods for front side metallisation , 2010 .

[36]  Ali Dali,et al.  Parameter identification of photovoltaic cell/module using genetic algorithm (GA) and particle swarm optimization (PSO) , 2015, 2015 3rd International Conference on Control, Engineering & Information Technology (CEIT).

[37]  Abdelhalim Zekry,et al.  A distributed SPICE-model of a solar cell , 1996 .

[38]  S. Ransome,et al.  Advanced PV module performance characterization and validation using the novel Loss Factors Model , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[39]  J. Johnson,et al.  Photovoltaic prognostics and heath management using learning algorithms , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[40]  Xiao Chen,et al.  Metallization for Crystalline Silicon Solar Cells Record low Ag paste consumption of 67 . 7 mg with dual print , 2013 .

[41]  A. Kapoor,et al.  Exact analytical solutions of the parameters of real solar cells using Lambert W-function , 2004 .

[42]  Sunit Rane,et al.  Firing and processing effects on microstructure of fritted silver thick film electrode materials for solar cells , 2003 .

[43]  Feng Gao,et al.  Light-Induced Plating of Screen-Printed Multi-Crystalline Silicon Solar Cells , 2011 .

[44]  Michael Koehl,et al.  Desert applications of PV modules , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[45]  Yang Hu,et al.  Global SunFarm data acquisition network, energy CRADLE, and time series analysis , 2013, 2013 IEEE Energytech.

[46]  M Heck,et al.  Modelling of conditions for accelerated lifetime testing of Humidity impact on PV-modules based on monitoring of climatic data , 2012 .

[47]  D. Pysch,et al.  Comprehensive analysis of advanced solar cell contacts consisting of printed fine‐line seed layers thickened by silver plating , 2009 .

[48]  Kashif Ishaque,et al.  Parameter extraction of photovoltaic cell using differential evolution method , 2011, 2011 IEEE Applied Power Electronics Colloquium (IAPEC).

[49]  John L. Sarrao,et al.  From Quanta to the Continuum: Opportunities for Mesoscale Science , 2012 .