A Spanish semantic orientation approach to domain adaptation for polarity classification

A lexicon-based domain adaptation method is proposed.Several domain polar lexicons were compiled following a corpus-based approach.The new resources are assessed over a Spanish corpus.The promising results encourage us to follow improving this domain adaptation method. One of the problems of opinion mining is the domain adaptation of the sentiment classifiers. There are several approaches to tackling this problem. One of these is the integration of a list of opinion bearing words for the specific domain. This paper presents the generation of several resources for domain adaptation to polarity detection. On the other hand, the lack of resources in languages different from English has orientated our work towards developing sentiment lexicons for polarity classifiers in Spanish. The results show the validity of the new sentiment lexicons, which can be used as part of a polarity classifier.

[1]  Maite Taboada,et al.  Analyzing Appraisal Automatically , 2004 .

[2]  Maite Taboada,et al.  Lexicon-Based Methods for Sentiment Analysis , 2011, CL.

[3]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[4]  Fermín L. Cruz,et al.  Clasificación de documentos basada en la opinión: experimentos con un corpus de críticas de cine en español , 2008, Proces. del Leng. Natural.

[5]  Maite Taboada,et al.  Cross-Linguistic Sentiment Analysis: From English to Spanish , 2009, RANLP.

[6]  David Jacot,et al.  Sentiment Analysis of French Movie Reviews , 2011, Advances in Distributed Agent-Based Retrieval Tools.

[7]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[8]  Rui Xia,et al.  Feature Ensemble Plus Sample Selection: Domain Adaptation for Sentiment Classification , 2013, IEEE Intelligent Systems.

[9]  Fei-Yue Wang,et al.  Sentiment analysis of Chinese documents: From sentence to document level , 2009 .

[10]  Lillian Lee,et al.  Opinion Mining and Sentiment Analysis , 2008, Found. Trends Inf. Retr..

[11]  John Blitzer,et al.  Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification , 2007, ACL.

[12]  Alexander F. Gelbukh,et al.  Empirical Study of Machine Learning Based Approach for Opinion Mining in Tweets , 2012, MICAI.

[13]  Nikola Ljubesic,et al.  Towards Sentiment Analysis of Financial Texts in Croatian , 2010, LREC.

[14]  Luis Alfonso Ureña López,et al.  Opinion Classification Techniques Applied to a Spanish Corpus , 2011, NLDB.

[15]  Vasileios Hatzivassiloglou,et al.  Predicting the Semantic Orientation of Adjectives , 1997, ACL.

[16]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[17]  Luis Alfonso Ureña López,et al.  OCA: Opinion corpus for Arabic , 2011, J. Assoc. Inf. Sci. Technol..

[18]  E. Mart Bilingual Experiments on an Opinion Comparable Corpus , 2013 .

[19]  José Manuel Perea Ortega,et al.  Semantic orientation for polarity classification in Spanish reviews , 2013, Expert Syst. Appl..

[20]  ChengXiang Zhai,et al.  Instance Weighting for Domain Adaptation in NLP , 2007, ACL.

[21]  Qiang Yang,et al.  Cross-domain sentiment classification via spectral feature alignment , 2010, WWW '10.

[22]  Rada Mihalcea,et al.  Multilingual Subjectivity Analysis Using Machine Translation , 2008, EMNLP.

[23]  Mike Thelwall,et al.  Do Neighbours Help? An Exploration of Graph-based Algorithms for Cross-domain Sentiment Classification , 2012, EMNLP.

[24]  Kerstin Denecke,et al.  Using SentiWordNet for multilingual sentiment analysis , 2008, 2008 IEEE 24th International Conference on Data Engineering Workshop.

[25]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[26]  Peter D. Turney Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews , 2002, ACL.

[27]  Songbo Tan,et al.  Adapting information bottleneck method for automatic construction of domain-oriented sentiment lexicon , 2010, WSDM '10.