Batch and PIR Codes and Their Connections to Locally-Repairable Codes

Two related families of codes are studied: batch codes and codes for private information retrieval. These two families can be viewed as natural generalizations of locally repairable codes, which were extensively studied in the context of coding for fault tolerance in distributed data storage systems. Bounds on the parameters of the codes, as well as basic constructions, are presented. Connections between different code families are discussed.

[1]  Itzhak Tamo,et al.  A Family of Optimal Locally Recoverable Codes , 2013, IEEE Transactions on Information Theory.

[2]  Dimitris S. Papailiopoulos,et al.  Locality and Availability in Distributed Storage , 2014, IEEE Transactions on Information Theory.

[3]  Tuvi Etzion,et al.  PIR Array Codes with Optimal PIR Rate , 2016, ArXiv.

[4]  Natalia Silberstein,et al.  Optimal combinatorial batch codes based on block designs , 2016, Des. Codes Cryptogr..

[5]  Han Mao Kiah,et al.  Optimal binary switch codes with small query size , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[6]  Camilla Hollanti,et al.  Applications of polymatroid theory to distributed storage systems , 2015, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[7]  Sergey Yekhanin,et al.  On the locality of codeword symbols in non-linear codes , 2013, Discret. Math..

[8]  Arya Mazumdar,et al.  An upper bound on the size of locally recoverable codes , 2013, 2013 International Symposium on Network Coding (NetCod).

[9]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[10]  Shubhangi Saraf,et al.  High-rate codes with sublinear-time decoding , 2011, STOC '11.

[11]  Rafail Ostrovsky,et al.  Batch codes and their applications , 2004, STOC '04.

[12]  Eyal Kushilevitz,et al.  Private information retrieval , 1998, JACM.

[13]  Yunnan Wu,et al.  A Survey on Network Codes for Distributed Storage , 2010, Proceedings of the IEEE.

[14]  Sriram Vishwanath,et al.  Optimal locally repairable codes via rank-metric codes , 2013, 2013 IEEE International Symposium on Information Theory.

[15]  Eitan Yaakobi,et al.  Constructions of batch codes with near-optimal redundancy , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[16]  Cheng Huang,et al.  On the Locality of Codeword Symbols , 2011, IEEE Transactions on Information Theory.

[17]  Hui Zhang,et al.  Combinatorial systematic switch codes , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[18]  Alexander Vardy,et al.  Lower Bound on the Redundancy of PIR Codes , 2016, ArXiv.

[19]  P. Vijay Kumar,et al.  Codes with locality for two erasures , 2014, 2014 IEEE International Symposium on Information Theory.

[20]  Ron M. Roth,et al.  Introduction to Coding Theory , 2019, Discrete Mathematics.

[21]  Sriram Vishwanath,et al.  Cooperative local repair in distributed storage , 2014, 2014 48th Annual Conference on Information Sciences and Systems (CISS).

[22]  Alexandros G. Dimakis,et al.  Batch codes through dense graphs without short cycles , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[23]  Shubhangi Saraf,et al.  High-rate codes with sublinear-time decoding , 2014, Electron. Colloquium Comput. Complex..

[24]  Douglas R. Stinson,et al.  Combinatorial batch codes , 2009, Adv. Math. Commun..

[25]  Camilla Hollanti,et al.  On the Combinatorics of Locally Repairable Codes via Matroid Theory , 2014, IEEE Transactions on Information Theory.

[26]  Helger Lipmaa,et al.  Linear Batch Codes , 2014, ICMCTA.

[27]  Tuvi Etzion,et al.  PIR array codes with optimal PIR rates , 2016, 2017 IEEE International Symposium on Information Theory (ISIT).

[28]  F. Lemmermeyer Error-correcting Codes , 2005 .

[29]  Abdullatif Shikfa,et al.  A Storage-Efficient and Robust Private Information Retrieval Scheme Allowing Few Servers , 2014, CANS.

[30]  Eitan Yaakobi,et al.  PIR with Low Storage Overhead: Coding instead of Replication , 2015, ArXiv.

[31]  Hui Zhang,et al.  Bounds for batch codes with restricted query size , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[32]  Jehoshua Bruck,et al.  Codes for network switches , 2013, 2013 IEEE International Symposium on Information Theory.

[33]  Zhifang Zhang,et al.  Repair Locality With Multiple Erasure Tolerance , 2014, IEEE Transactions on Information Theory.

[34]  Itzhak Tamo,et al.  Bounds on locally recoverable codes with multiple recovering sets , 2014, 2014 IEEE International Symposium on Information Theory.

[35]  Csilla Bujtás,et al.  Combinatorial batch codes: Extremal problems under Hall-type conditions , 2011, Electron. Notes Discret. Math..

[36]  Yuan Zhou Introduction to Coding Theory , 2010 .

[37]  Hirosuke Yamamoto,et al.  Private information retrieval for coded storage , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[38]  Sushmita Ruj,et al.  Combinatorial batch codes: A lower bound and optimal constructions , 2012, Adv. Math. Commun..

[39]  Richard A. Brualdi,et al.  Combinatorial batch codes and transversal matroids , 2010, Adv. Math. Commun..