The flexibility of models of recognition memory: An analysis by the minimum-description length principle

[1]  J SWETS,et al.  Decision processes in perception. , 1961, Psychological review.

[2]  R. Atkinson,et al.  A variable sensitivity theory of signal detection. , 1963, Psychological review.

[3]  H R BLACKWELL,et al.  Neural theories of simple visual discriminations. , 1963, Journal of the Optical Society of America.

[4]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[5]  J. Swets Indices of discrimination or diagnostic accuracy: their ROCs and implied models. , 1986, Psychological bulletin.

[6]  Douglas L. Hintzman,et al.  Judgments of frequency and recognition memory in a multiple-trace memory model. , 1988 .

[7]  J. G. Snodgrass,et al.  Pragmatics of measuring recognition memory: applications to dementia and amnesia. , 1988, Journal of experimental psychology. General.

[8]  Neil A. Macmillan,et al.  Detection Theory: A User's Guide , 1991 .

[9]  R. Ratcliff,et al.  Testing global memory models using ROC curves. , 1992 .

[10]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[11]  Jorma Rissanen,et al.  Fisher information and stochastic complexity , 1996, IEEE Trans. Inf. Theory.

[12]  Vijay Balasubramanian,et al.  Statistical Inference, Occam's Razor, and Statistical Mechanics on the Space of Probability Distributions , 1996, Neural Computation.

[13]  A. Yonelinas Recognition memory ROCs for item and associative information: The contribution of recollection and familiarity , 1997, Memory & cognition.

[14]  E. Erdfelder,et al.  Comment: Process-dissociation measurement models: Threshold theory or detection theory? , 1998 .

[15]  David R. Anderson,et al.  Model Selection and Multimodel Inference , 2003 .

[16]  M. Glanzer,et al.  Slope of the receiver-operating characteristic in recognition memory. , 1999 .

[17]  David M. Riefer,et al.  Theoretical and empirical review of multinomial process tree modeling , 1999, Psychonomic bulletin & review.

[18]  Wasserman,et al.  Bayesian Model Selection and Model Averaging. , 2000, Journal of mathematical psychology.

[19]  H Pashler,et al.  How persuasive is a good fit? A comment on theory testing. , 2000, Psychological review.

[20]  I. J. Myung,et al.  Counting probability distributions: Differential geometry and model selection , 2000, Proc. Natl. Acad. Sci. USA.

[21]  I. J. Myung,et al.  GUEST EDITORS' INTRODUCTION: Special Issue on Model Selection , 2000 .

[22]  Tim B. Swartz,et al.  Approximating Integrals Via Monte Carlo and Deterministic Methods , 2000 .

[23]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[24]  Jorma Rissanen,et al.  Strong optimality of the normalized ML models as universal codes and information in data , 2001, IEEE Trans. Inf. Theory.

[25]  T. Wickens Elementary Signal Detection Theory , 2001 .

[26]  L. T. DeCarlo Signal detection theory with finite mixture distributions: theoretical developments with applications to recognition memory. , 2002, Psychological review.

[27]  Kenneth J. Malmberg,et al.  On the form of ROCs constructed from confidence ratings. , 2002, Journal of experimental psychology. Learning, memory, and cognition.

[28]  Daniel J. Navarro,et al.  A Note on the Applied Use of MDL Approximations , 2004, Neural Computation.

[29]  Roger Ratcliff,et al.  Assessing model mimicry using the parametric bootstrap , 2004 .

[30]  Jay I. Myung,et al.  Assessing the distinguishability of models and the informativeness of data , 2004, Cognitive Psychology.

[31]  Mark A. Pitt,et al.  Advances in Minimum Description Length: Theory and Applications , 2005 .

[32]  Michael D. Lee,et al.  An application of minimum description length clustering to partitioning learning curves , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[33]  Kristopher J Preacher,et al.  Quantifying Parsimony in Structural Equation Modeling , 2006, Multivariate behavioral research.

[34]  Jay I. Myung,et al.  Model selection by Normalized Maximum Likelihood , 2006 .

[35]  S. Walker,et al.  On the normalized maximum likelihood and Bayesian decision theory , 2006 .

[36]  P. Grünwald The Minimum Description Length Principle (Adaptive Computation and Machine Learning) , 2007 .

[37]  Jay I. Myung,et al.  Does response scaling cause the generalized context model to mimic a prototype model? , 2007, Psychonomic bulletin & review.

[38]  Martin Brandt,et al.  Bridging the Gap Between Measurement Models and Theories of Human Memory , 2007 .

[39]  J. Wixted Dual-process theory and signal-detection theory of recognition memory. , 2007, Psychological review.

[40]  Jean Marie Linhart,et al.  Algorithm 885: Computing the Logarithm of the Normal Distribution , 2008, TOMS.

[41]  Kenneth J. Malmberg,et al.  Recognition memory: A review of the critical findings and an integrated theory for relating them , 2008, Cognitive Psychology.

[42]  M. Aitkin,et al.  Bayes factors: Prior sensitivity and model generalizability , 2008 .

[43]  J. Wixted,et al.  Testing signal-detection models of yes/no and two-alternative forced-choice recognition memory. , 2009, Journal of experimental psychology. General.

[44]  D. Navarro,et al.  NML, Bayes and true distributions: A comment on Karabatsos and Walker (2006) , 2009 .

[45]  A. Bröder,et al.  Recognition ROCs are curvilinear-or are they? On premature arguments against the two-high-threshold model of recognition. , 2009, Journal of experimental psychology. Learning, memory, and cognition.

[46]  N. L. Johnson,et al.  Continuous Multivariate Distributions, Volume 1: Models and Applications , 2019 .

[47]  K. C. Klauer,et al.  Toward a complete decision model of item and source recognition: A discrete-state approach , 2010, Psychonomic bulletin & review.

[48]  Marc W Howard,et al.  Some-or-none recollection: Evidence from item and source memory. , 2010, Journal of experimental psychology. General.

[49]  Hao Wu,et al.  On the Minimum Description Length Complexity of Multinomial Processing Tree Models. , 2010, Journal of mathematical psychology.

[50]  Jay I. Myung,et al.  Minimum description length model selection of multinomial processing tree models , 2010, Psychonomic bulletin & review.

[51]  Mark A. Pitt,et al.  Adaptive Design Optimization: A Mutual Information-Based Approach to Model Discrimination in Cognitive Science , 2010, Neural Computation.

[52]  Walter Zucchini,et al.  Model Selection , 2011, International Encyclopedia of Statistical Science.

[53]  Arndt Bröder,et al.  Correction to Bröder and Schütz (2009). , 2011 .

[54]  K. C. Klauer,et al.  Assessing the belief bias effect with ROCs: reply to Dube, Rotello, and Heit (2010). , 2011, Psychological review.

[55]  E. Heit,et al.  The belief bias effect is aptly named: a reply to Klauer and Kellen (2011). , 2011, Psychological review.

[56]  David Kellen,et al.  Evaluating models of recognition memory using first- and second-choice responses , 2011 .

[57]  C. Rotello,et al.  Binary ROCs in perception and recognition memory are curved. , 2012, Journal of experimental psychology. Learning, memory, and cognition.