The Impact of Different Atmospheric CO2 Concentrations on Large Scale Miocene Temperature Signatures

Based on inferences from proxy records the Miocene (23.03–5.33 Ma) was a time of amplified polar warmth compared to today. However, it remains a challenge to simulate a warm Miocene climate and pronounced polar warmth at reconstructed Miocene CO2 concentrations. Using a state‐of‐the‐art Earth‐System‐Model, we implement a high‐resolution paleobathymetry and simulate Miocene climate at different atmospheric CO2 concentrations. We estimate global mean surface warming of +3.1°C relative to the preindustrial at a CO2 level of 450 ppm. An increase of atmospheric CO2 from 280 to 450 ppm provides an individual warming of ∼1.4°C, which is as strong as all other Miocene forcing contributions combined. Substantial changes in surface albedo are vital to explain Miocene surface warming. Simulated surface temperatures fit well with proxy reconstructions at low‐ to mid‐latitudes. The high latitude cooling bias becomes less pronounced for higher atmospheric CO2 concentrations. At such CO2 levels simulated Miocene climate shows a reduced polar amplification, linked to a breakdown of seasonality in the Arctic Ocean. A pronounced warming in boreal fall is detected for a CO2 increase from 280 to 450 ppm, in comparison to weaker warming for CO2 changes from 450 to 720 ppm. Moreover, a pronounced warming in winter is detected for a CO2 increase from 450 to 720 ppm, in contrast to a moderate summer temperature increase, which is accompanied by a strong sea‐ice concentration decline that promotes cloud formation in summer via enhanced moisture availability. As a consequence planetary albedo increases and dampens the temperature response to CO2 forcing at a warmer Miocene background climate.

[1]  T. Herbert,et al.  Tectonic degassing drove global temperature trends since 20 Ma , 2022, Science.

[2]  C. Stepanek,et al.  Effects of CO2 and Ocean Mixing on Miocene and Pliocene Temperature Gradients , 2022, Paleoceanography and Paleoclimatology.

[3]  F. Sangiorgi,et al.  Middle Miocene Temperature and Productivity Evolution at a Northeast Atlantic Shelf Site (IODP U1318, Porcupine Basin): Global and Regional Changes , 2021, Paleoceanography and Paleoclimatology.

[4]  M. Leng,et al.  Temperature Gradients Across the Pacific Ocean During the Middle Miocene , 2021, Paleoceanography and Paleoclimatology.

[5]  D. Lunt,et al.  Hydrological impact of Middle Miocene Antarctic ice-free areas coupled to deep ocean temperatures , 2021, Nature Geoscience.

[6]  T. Jung,et al.  Assessment of the Finite VolumE Sea Ice Ocean Model (FESOM2.0), Part II: Partial bottom cells, embedded sea ice and vertical mixing library CVMIX , 2021 .

[7]  G. Foster,et al.  Atmospheric CO2 over the Past 66 Million Years from Marine Archives , 2021 .

[8]  W. Jokat,et al.  Opening of the Fram Strait led to the establishment of a modern-like three-layer stratification in the Arctic Ocean during the Miocene , 2021, arktos.

[9]  C. A. Riihimaki,et al.  Simulating Miocene Warmth: Insights From an Opportunistic Multi‐Model Ensemble (MioMIP1) , 2021, Paleoceanography and Paleoclimatology.

[10]  B. Otto‐Bliesner,et al.  Large-scale features of Last Interglacial climate: results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4) , 2021 .

[11]  P. Pearson,et al.  The Miocene: The Future of the Past , 2020, Paleoceanography and Paleoclimatology.

[12]  C. Haas,et al.  Sea ice dynamics in the Bransfield Strait, Antarctic Peninsula, during the past 240 years: a multi-proxy intercomparison study , 2020 .

[13]  C. Lear,et al.  Initiation of the Western Pacific Warm Pool at the Middle Miocene Climate Transition? , 2020, Paleoceanography and Paleoclimatology.

[14]  C. Stepanek,et al.  Abrupt Climate and Weather Changes Across Time Scales , 2020, Paleoceanography and Paleoclimatology.

[15]  T. Herbert,et al.  Bihemispheric Warming in the Miocene Climatic Optimum as Seen From the Danish North Sea , 2020, Paleoceanography and Paleoclimatology.

[16]  B. Davy,et al.  The Evolving Paleobathymetry of the Circum‐Antarctic Southern Ocean Since 34 Ma: A Key to Understanding Past Cryosphere‐Ocean Developments , 2020, Geochemistry, Geophysics, Geosystems.

[17]  K. Nisancioglu,et al.  Global Cenozoic Paleobathymetry with a focus on the Northern Hemisphere Oceanic Gateways , 2020 .

[18]  W. Jokat,et al.  Simulated Thermohaline Fingerprints in Response to Different Greenland‐Scotland Ridge and Fram Strait Subsidence Histories , 2020, Paleoceanography and Paleoclimatology.

[19]  M. Huber,et al.  Miocene Evolution of North Atlantic Sea Surface Temperature , 2020, Paleoceanography and Paleoclimatology.

[20]  T. Bailey,et al.  Tropical Sea Surface Temperatures Following the Middle Miocene Climate Transition From Laser‐Ablation ICP‐MS Analysis of Glassy Foraminifera , 2020, Paleoceanography and Paleoclimatology.

[21]  B. Otto‐Bliesner,et al.  Large-scale features of Last Interglacial climate: Results from evaluating the lig127k simulations for CMIP6-PMIP4 , 2020 .

[22]  G. Foster,et al.  Ocean Carbon Storage across the middle Miocene: a new interpretation for the Monterey Event , 2020, Nature Communications.

[23]  Brady,et al.  A return to large-scale features of Pliocene climate: the Pliocene Model Intercomparison Project Phase 2 , 2020 .

[24]  P. Valdes,et al.  DeepMIP: Model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data , 2020, Climate of the Past.

[25]  S. Jamieson,et al.  Reconstructions of Antarctic topography since the Eocene–Oligocene boundary , 2019, Palaeogeography, Palaeoclimatology, Palaeoecology.

[26]  M. Losch,et al.  Evaluation of FESOM2.0 Coupled to ECHAM6.3: Preindustrial and HighResMIP Simulations , 2019, Journal of Advances in Modeling Earth Systems.

[27]  C. Poulsen,et al.  Quantifying the Cloud Particle‐Size Feedback in an Earth System Model , 2019, Geophysical Research Letters.

[28]  J. Tierney,et al.  Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks , 2019, Science Advances.

[29]  B. Otto‐Bliesner,et al.  Contributions of aerosol‐cloud interactions to mid‐Piacenzian seasonally sea ice‐free Arctic Ocean , 2019, Geophysical Research Letters.

[30]  D. Lunt,et al.  Climate Sensitivity on Geological Timescales Controlled by Nonlinear Feedbacks and Ocean Circulation , 2019, Geophysical Research Letters.

[31]  T. Eglinton,et al.  Midlatitude Temperature Variations in the Oligocene to Early Miocene , 2019, Paleoceanography and Paleoclimatology.

[32]  T. Herbert,et al.  Eastern equatorial Pacific cold tongue evolution since the late Miocene linked to extratropical climate , 2019, Science Advances.

[33]  P. Ziveri,et al.  Upregulation of phytoplankton carbon concentrating mechanisms during low CO2 glacial periods and implications for the phytoplankton pCO2 proxy , 2019, Quaternary Science Reviews.

[34]  G. Lohmann Temperatures from energy balance models: the effective heat capacity matters , 2019, Earth System Dynamics.

[35]  Patrick Scholz,et al.  Assessment of the Finite VolumE Sea Ice Ocean Model (FESOM2.0), Part I: Description of selected key model elements and comparison to its predecessor version , 2019 .

[36]  P. Pearson,et al.  Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy , 2018, Earth and Planetary Science Letters.

[37]  M. Huber,et al.  North Atlantic temperature and pCO2 coupling in the early-middle Miocene , 2018 .

[38]  A. Bodas‐Salcedo,et al.  Quantifying climate feedbacks in polar regions , 2018, Nature Communications.

[39]  S. Clemens,et al.  Late Miocene climate cooling and intensification of southeast Asian winter monsoon , 2018, Nature Communications.

[40]  R. Milovský,et al.  Temperature and isotopic composition of seawater in the epicontinental sea (Central Paratethys) during the Middle Miocene Climate Transition based on Mg/Ca, δ 18 O and δ 13 C from foraminiferal tests , 2018 .

[41]  A. Shevenell,et al.  Deciphering the State of the Late Miocene to Early Pliocene Equatorial Pacific , 2018 .

[42]  R. McKay,et al.  Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Miocene , 2018, Nature Communications.

[43]  M. Claussen,et al.  Plant functional diversity affects climate-vegetation interaction , 2017 .

[44]  M. Schulz,et al.  Boundary conditions for the Middle Miocene Climate Transition (MMCT v1.0) , 2017 .

[45]  M. Pagani,et al.  Monsoonal upwelling in the western Arabian Sea since the middle Miocene , 2017 .

[46]  W. Jokat,et al.  Threshold in North Atlantic-Arctic Ocean circulation controlled by the subsidence of the Greenland-Scotland Ridge , 2017, Nature Communications.

[47]  D. Royer,et al.  Future climate forcing potentially without precedent in the last 420 million years , 2017, Nature Communications.

[48]  T. Herbert,et al.  Late Miocene global cooling and the rise of modern ecosystems , 2016 .

[49]  Qiang Wang,et al.  The Finite-volumE Sea ice–Ocean Model (FESOM2) , 2016 .

[50]  C. John,et al.  Exploring the potential of clumped isotope thermometry on coccolith‐rich sediments as a sea surface temperature proxy , 2016 .

[51]  T. Laepple,et al.  Flat meridional temperature gradient in the early Eocene in the subsurface rather than surface ocean , 2016 .

[52]  M. Yoshimori,et al.  Surface Arctic Amplification Factors in CMIP5 Models: Land and Oceanic Surfaces and Seasonality , 2016 .

[53]  R. DeConto,et al.  Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene , 2015, Proceedings of the National Academy of Sciences.

[54]  T. Hickler,et al.  Climate-vegetation modelling and fossil plant data suggest low atmospheric CO 2 in the late Miocene , 2015 .

[55]  D. Lunt,et al.  Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry , 2015 .

[56]  T. Herbert,et al.  Cooling Mediterranean Sea surface temperatures during the Late Miocene provide a climate context for evolutionary transitions in Africa and Eurasia , 2015 .

[57]  T. Herbert,et al.  Evolution of Mediterranean sea surface temperatures 3.5–1.5 Ma: Regional and hemispheric influences , 2015 .

[58]  Rachel Flecker,et al.  Disentangling the roles of late Miocene palaeogeography and vegetation – Implications for climate sensitivity , 2015 .

[59]  Camille Li,et al.  Aridification of the Sahara desert caused by Tethys Sea shrinkage during the Late Miocene , 2014, Nature.

[60]  G. Lohmann,et al.  Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition , 2014 .

[61]  Zhonghui Liu,et al.  A 12-Million-Year Temperature History of the Tropical Pacific Ocean , 2014, Science.

[62]  Jeffrey T. Kiehl,et al.  Sensitivity of the Palaeocene–Eocene Thermal Maximum climate to cloud properties , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[63]  R. DeConto,et al.  A 40-million-year history of atmospheric CO2 , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[64]  V. Brovkin,et al.  Representation of natural and anthropogenic land cover change in MPI‐ESM , 2013 .

[65]  B. Stevens,et al.  Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the Coupled Model Intercomparison Project phase 5 , 2013 .

[66]  M. Huber,et al.  The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1 , 2013 .

[67]  M. Huber,et al.  Tidal dissipation in the early Eocene and implications for ocean mixing , 2013 .

[68]  B. Stevens,et al.  Atmospheric component of the MPI‐M Earth System Model: ECHAM6 , 2013 .

[69]  J. A. Wolfe Distribution of major vegetational types during the Tertiary , 2013 .

[70]  W. Jokat,et al.  Paleo-bathymetry of the northern North Atlantic and consequences for the opening of the Fram Strait , 2013, Marine Geophysical Research.

[71]  M. Rafélis,et al.  Changes in sea-surface conditions in the Equatorial Pacific during the middle Miocene–Pliocene as inferred from coccolith geochemistry , 2013 .

[72]  Stefan Schouten,et al.  Paleoceanographic changes in the Eastern Equatorial Pacific over the last 10 Myr , 2012 .

[73]  J. Eronen,et al.  The relative roles of CO 2 and palaeogeography in determining Late Miocene climate: results from a terrestrial model-data comparison , 2012 .

[74]  S. Valcke,et al.  The OASIS3 coupler: a European climate modelling community software , 2012 .

[75]  A. Crimmins,et al.  Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing , 2012, Nature.

[76]  Mark D. Zelinka,et al.  Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth , 2012 .

[77]  N. Hoyos,et al.  Evidence for middle Eocene and younger land emergence in central Panama: Implications for Isthmus closure , 2012 .

[78]  A. Haywood,et al.  Global vegetation dynamics and latitudinal temperature gradients during the mid to Late Miocene (15.97-5.33 Ma) , 2012 .

[79]  G. Schmidt,et al.  On the causes of mid-Pliocene warmth and polar amplification , 2012 .

[80]  R. Müller,et al.  Modeling the Miocene climatic optimum: Ocean circulation , 2012 .

[81]  R. Müller,et al.  Modeling the Miocene Climatic Optimum. Part I: Land and Atmosphere* , 2011 .

[82]  R. DeConto,et al.  The Role of Carbon Dioxide During the Onset of Antarctic Glaciation , 2011, Science.

[83]  J. Jungclaus,et al.  The Middle Miocene climate as modelled in an atmosphere-ocean-biosphere model , 2011 .

[84]  G. Knorr,et al.  A warm Miocene climate at low atmospheric CO2 levels , 2011 .

[85]  E. Schefuß,et al.  Miocene to Pliocene development of surface and subsurface temperatures in the Benguela Current system , 2011 .

[86]  D. Beerling,et al.  Convergent Cenozoic CO2 history , 2011 .

[87]  M. Huber,et al.  Climate of the Past Discussions , 2005 .

[88]  Maria Seton,et al.  Early to Middle Miocene monsoon climate in Australia , 2011 .

[89]  R. Morley Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests , 2011 .

[90]  M. Schulz,et al.  Does Antarctic glaciation force migration of the tropical rain belt , 2010 .

[91]  Timothy D. Herbert,et al.  Tropical Ocean Temperatures Over the Past 3.5 Million Years , 2010, Science.

[92]  J. Groeneveld,et al.  East Asian summer monsoon weakening after 7.5 Ma: Evidence from combined planktonic foraminifera Mg/Ca and δ18O (ODP Site 1146; northern South China Sea) , 2010 .

[93]  C. Anderson,et al.  Quantitative uncertainty analyses of ancient atmospheric CO2 estimates from fossil leaves , 2009, American Journal of Science.

[94]  T. Bickert,et al.  Southern Ocean frontal system changes precede Antarctic ice sheet growth during the middle Miocene , 2009 .

[95]  T. Herbert,et al.  High‐amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period , 2009 .

[96]  Victor Brovkin,et al.  Global biogeophysical interactions between forest and climate , 2009 .

[97]  R. Leckie,et al.  Early history of the Western Pacific Warm Pool during the middle to late Miocene (~ 13.2–5.8 Ma): Role of sea-level change and implications for equatorial circulation , 2009 .

[98]  J. Marotzke,et al.  Warm Paleocene/Eocene climate as simulated in ECHAM5/MPI-OM , 2009 .

[99]  V. Mosbrugger,et al.  MIOCENE CLIMATE MODELLING SENSITIVITY EXPERIMENTS FOR DIFFERENT CO2 CONCENTRATIONS , 2009 .

[100]  D. Dilcher,et al.  The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems , 2008, Proceedings of the National Academy of Sciences.

[101]  S. Clemens,et al.  Large-scale hydrological change drove the late Miocene C4 plant expansion in the Himalayan foreland and Arabian Peninsula , 2007 .

[102]  V. Mosbrugger,et al.  Eocene vegetation patterns reconstructed from plant diversity — A global perspective , 2007 .

[103]  Jens Kattge,et al.  Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century? , 2007 .

[104]  B. Soden,et al.  An Assessment of Climate Feedbacks in Coupled Ocean–Atmosphere Models , 2006 .

[105]  Timothy D. Herbert,et al.  Evolution of the Eastern Tropical Pacific Through Plio-Pleistocene Glaciation , 2006, Science.

[106]  H. Dijkstra,et al.  Effect of ocean gateways on the global ocean circulation in the late Oligocene and early Miocene , 2006 .

[107]  D. Lea,et al.  Middle Miocene Southern Ocean Cooling and Antarctic Cryosphere Expansion , 2004, Science.

[108]  T. Herbert,et al.  High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch , 2004, Nature.

[109]  A. Mackensen,et al.  Eastern Mediterranean surface water temperatures and delta O-18 composition during deposition of sapropels in the late Quaternary , 2003 .

[110]  H. Drange,et al.  Modelling Late Cenozoic isostatic elevation changes in the Barents Sea and their implications for oceanic and climatic regimes: preliminary results , 2002 .

[111]  Michael Steele,et al.  PHC: A Global Ocean Hydrography with a High-Quality Arctic Ocean , 2001 .

[112]  D. Royer,et al.  Stomatal density and stomatal index as indicators of paleoatmospheric CO(2) concentration. , 2001, Review of palaeobotany and palynology.

[113]  K. Emeis,et al.  Temperature and salinity variations of Mediterranean Sea surface waters over the last 16,000 years from records of planktonic stable oxygen isotopes and alkenone unsaturation ratios , 2000 .

[114]  T. Crowley,et al.  Response of a coupled ocean/energy balance model to restricted flow through the Central American Isthmus , 1997 .

[115]  Pinhas Alpert,et al.  Factor Separation in Numerical Simulations. , 1993 .

[116]  J. Mitchell,et al.  C02 and climate: a missing feedback? , 1989, Nature.

[117]  M. Steckler,et al.  Subsidence of the Atlantic-type continental margin off New York , 1978 .