Modelling of the hose and drogue in air-to-air refuelling

A static model of the hose and drogue used to provide data in a real-time flight simulation of air-to-air refuelling is presented. The model predicts (a) the interference effect of the flow around the nose of a combat receiver aircraft on the pre-contact position of the drogue and (b) the hose shape and the loads induced on the receiver probe during contact. The use of the static model in the pre-contact case is validated for a normal closure speed by comparison with the results from a small perturbation dynamic analysis. At higher closure speed the static model is found to be less satisfactory. In a typical receiver approach a movement of the drogue similar to the drogue radius is predicted