Spectral/hp element methods: Recent developments, applications, and perspectives

The spectral/hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the spectral/hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/hp element method in more complex science and engineering applications are discussed.

[1]  S. Scott Collis,et al.  Discontinuous Galerkin Methods for Compressible DNS , 2003 .

[2]  S. Sherwin,et al.  Convective instability and transient growth in steady and pulsatile stenotic flows , 2008, Journal of Fluid Mechanics.

[3]  Dan S. Henningson,et al.  Direct numerical simulation of the flow around a wall-mounted square cylinder under various inflow conditions , 2015 .

[4]  S. Orszag,et al.  Numerical investigation of transitional and weak turbulent flow past a sphere , 2000, Journal of Fluid Mechanics.

[5]  Yao Zhang,et al.  Discontinuous Galerkin methods for solving Boussinesq-Green-Naghdi equations in resolving non-linear and dispersive surface water waves , 2014, J. Comput. Phys..

[6]  Dimitri J. Mavriplis,et al.  Discontinuous Galerkin unsteady discrete adjoint method for real-time efficient Tsunami simulations , 2013, J. Comput. Phys..

[7]  Roger E. A. Arndt,et al.  CAVITATION IN VORTICAL FLOWS , 2002 .

[8]  Michael A. Sprague,et al.  Spectral elements and field separation for an acoustic fluid subject to cavitation , 2003 .

[9]  Lei Bao,et al.  A mass and momentum flux-form high-order discontinuous Galerkin shallow water model on the cubed-sphere , 2014, J. Comput. Phys..

[10]  Spencer J. Sherwin,et al.  High-order curvilinear meshing using a thermo-elastic analogy , 2016, Comput. Aided Des..

[11]  TadmorEitan Convergence of spectral methods for nonlinear conservation laws , 1989 .

[12]  M. Taylor The Spectral Element Method for the Shallow Water Equations on the Sphere , 1997 .

[13]  Sehun Chun,et al.  Method of Moving Frames to Solve Conservation Laws on Curved Surfaces , 2012, J. Sci. Comput..

[14]  Hugh Maurice Blackburn,et al.  Spectral element filtering techniques for large eddy simulation with dynamic estimation , 2003 .

[15]  Spencer J. Sherwin,et al.  Aliasing errors due to quadratic nonlinearities on triangular spectral /hp element discretisations , 2007 .

[16]  Julia S. Mullen,et al.  Filter-based stabilization of spectral element methods , 2001 .

[17]  Spencer J. Sherwin,et al.  Influence of localised smooth steps on the instability of a boundary layer , 2015, Journal of Fluid Mechanics.

[18]  S. Sherwin,et al.  From h to p efficiently: Strategy selection for operator evaluation on hexahedral and tetrahedral elements , 2011 .

[19]  Robert Michael Kirby,et al.  Exploiting Batch Processing on Streaming Architectures to Solve 2D Elliptic Finite Element Problems: A Hybridized Discontinuous Galerkin (HDG) Case Study , 2013, Journal of Scientific Computing.

[20]  V.-T. Nguyen,et al.  A discontinuous Galerkin front tracking method for two-phase flows with surface tension , 2008 .

[21]  Robert Michael Kirby,et al.  To CG or to HDG: A Comparative Study in 3D , 2016, J. Sci. Comput..

[22]  W. Devenport,et al.  The structure and development of a wing-tip vortex , 1996, Journal of Fluid Mechanics.

[23]  Paul Fischer,et al.  Spectral element methods for large scale parallel Navier—Stokes calculations , 1994 .

[24]  Spencer J. Sherwin,et al.  A generic framework for time-stepping partial differential equations (PDEs): general linear methods, object-oriented implementation and application to fluid problems , 2011 .

[25]  M. G. Duffy,et al.  Quadrature Over a Pyramid or Cube of Integrands with a Singularity at a Vertex , 1982 .

[26]  Stephen J. Thomas,et al.  A Discontinuous Galerkin Global Shallow Water Model , 2005, Monthly Weather Review.

[27]  Anthony T. Patera,et al.  A Legendre spectral element method for simulation of unsteady incompressible viscous free-surface flows , 1990 .

[28]  C. Williamson,et al.  Dynamics and Instabilities of Vortex Pairs , 2016 .

[29]  P. Saugat Large eddy simulation for incompressible flows , 2001 .

[30]  George Em Karniadakis,et al.  A triangular spectral element method; applications to the incompressible Navier-Stokes equations , 1995 .

[31]  S. Sherwin,et al.  From h to p efficiently: optimal implementation strategies for explicit time-dependent problems using the spectral/hp element method , 2014, International journal for numerical methods in fluids.

[32]  S. Sherwin,et al.  STABILISATION OF SPECTRAL/HP ELEMENT METHODS THROUGH SPECTRAL VANISHING VISCOSITY: APPLICATION TO FLUID MECHANICS MODELLING , 2006 .

[33]  Richard Pasquetti,et al.  Spectral Vanishing Viscosity Method for Large-Eddy Simulation of Turbulent Flows , 2006, J. Sci. Comput..

[34]  S. Scott Collis,et al.  Discontinuous Galerkin Methods for Turbulence Simulation , 2002 .

[35]  Laslo T. Diosady,et al.  DNS of Flows over Periodic Hills using a Discontinuous-Galerkin Spectral-Element Method , 2014 .

[36]  S. Orszag,et al.  High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .

[37]  J. Boyd,et al.  A staggered spectral element model with application to the oceanic shallow , 1995 .

[38]  Michael Dumbser,et al.  A space-time discontinuous Galerkin method for Boussinesq-type equations , 2016, Appl. Math. Comput..

[39]  H. Kreiss,et al.  Comparison of accurate methods for the integration of hyperbolic equations , 1972 .

[40]  Bastien Jordi,et al.  Steady-state solvers for stability analysis of vortex dominated flows , 2015 .

[41]  Jörg Stiller,et al.  Adapting the spectral vanishing viscosity method for large-eddy simulations in cylindrical configurations , 2012, J. Comput. Phys..

[42]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[43]  David Moxey,et al.  23rd International Meshing Roundtable (IMR23) A thermo-elastic analogy for high-order curvilinear meshing with control of mesh validity and quality , 2014 .

[44]  H. Babinsky,et al.  Lift and the leading-edge vortex , 2013, Journal of Fluid Mechanics.

[45]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[46]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[47]  G. Wu,et al.  Finite element simulation of fully non‐linear interaction between vertical cylinders and steep waves. Part 1: methodology and numerical procedure , 2001 .

[48]  Spencer J. Sherwin,et al.  Regular Article: Free-Surface Flow Simulation Using hp/Spectral Elements , 1999 .

[49]  Claes Eskilsson,et al.  Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation , 2016 .

[50]  Spencer J. Sherwin,et al.  From h to p Efficiently: Selecting the Optimal Spectral/hp Discretisation in Three Dimensions , 2011 .

[51]  Freddie D. Witherden,et al.  On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools , 2017, J. Comput. Phys..

[52]  Clint Dawson,et al.  An explicit hybridized discontinuous Galerkin method for Serre-Green-Naghdi wave model , 2018 .

[53]  S. Sherwin,et al.  Direct optimal growth analysis for timesteppers , 2008 .

[54]  Spencer J. Sherwin,et al.  An unstructured spectral/hp element model for enhanced Boussinesq-type equations , 2006 .

[55]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[56]  Jan S. Hesthaven,et al.  DG-FEM solution for nonlinear wave-structure interaction using Boussinesq-type equations , 2008 .

[57]  George Em Karniadakis,et al.  Coarse Resolution Turbulence Simulations With Spectral Vanishing Viscosity—Large-Eddy Simulations (SVV-LES) , 2002 .

[58]  Spencer J. Sherwin,et al.  An adaptable parallel algorithm for the direct numerical simulation of incompressible turbulent flows using a Fourier spectral/hp element method and MPI virtual topologies , 2016, Comput. Phys. Commun..

[59]  Rémi Abgrall,et al.  High‐order CFD methods: current status and perspective , 2013 .

[60]  Spencer J. Sherwin,et al.  Direct numerical simulations of the flow around wings with spanwise waviness , 2017, Journal of Fluid Mechanics.

[61]  Michael A. Sprague,et al.  A spectral-element/finite-element analysis of a ship-like structure subjected to an underwater explosion , 2006 .

[62]  R. Eatock Taylor,et al.  Finite element analysis of two-dimensional non-linear transient water waves , 1994 .

[63]  Chuanju Xu,et al.  Stabilization Methods for Spectral Element Computations of Incompressible Flows , 2006, J. Sci. Comput..

[64]  Jan S. Hesthaven,et al.  Discontinuous Galerkin scheme for the spherical shallow water equations with applications to tsunami modeling and prediction , 2018, J. Comput. Phys..

[65]  Thor Gjesdal,et al.  Variational multiscale turbulence modelling in a high order spectral element method , 2009, J. Comput. Phys..

[66]  S. Sherwin,et al.  An isoparametric approach to high-order curvilinear boundary-layer meshing , 2015 .

[67]  George Em Karniadakis,et al.  A Spectral Vanishing Viscosity Method for Large-Eddy Simulations , 2000 .

[68]  P. Fischer,et al.  Large eddy simulation of turbulent channel flows by the rational large eddy simulation model , 2002 .

[69]  Taehun Lee,et al.  A level set characteristic Galerkin finite element method for free surface flows , 2005 .

[70]  Spencer J. Sherwin,et al.  Direct numerical simulations of the flow around wings with spanwise waviness at a very low Reynolds number , 2017 .

[71]  F. Toschi,et al.  Acceleration and vortex filaments in turbulence , 2005, nlin/0501041.

[72]  Claes Eskilsson,et al.  Method of moving frames to solve the shallow water equations on arbitrary rotating curved surfaces , 2017, J. Comput. Phys..

[73]  Spencer J. Sherwin,et al.  Dealiasing techniques for high-order spectral element methods on regular and irregular grids , 2015, J. Comput. Phys..

[74]  S. Sherwin,et al.  Mesh generation in curvilinear domains using high‐order elements , 2002 .

[75]  Ivo Babuška,et al.  The p - and h-p version of the finite element method, an overview , 1990 .

[76]  Paul Fischer,et al.  An Overlapping Schwarz Method for Spectral Element Solution of the Incompressible Navier-Stokes Equations , 1997 .

[77]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[78]  Robert Michael Kirby,et al.  Nektar++: An open-source spectral/hp element framework , 2015, Comput. Phys. Commun..

[79]  Dan S. Henningson,et al.  Stabilization of the Spectral-Element Method in Turbulent Flow Simulations , 2011 .

[80]  J. Hesthaven,et al.  Nodal DG-FEM solution of high-order Boussinesq-type equations , 2007 .

[81]  Roland Bouffanais,et al.  Mesh Update Techniques for Free-Surface Flow Solvers Using Spectral Element Method , 2006, J. Sci. Comput..

[82]  N. Bodard,et al.  Fluid-Structure Interaction by the Spectral Element Method , 2006, J. Sci. Comput..

[83]  Spencer J. Sherwin,et al.  Destabilisation and modification of Tollmien–Schlichting disturbances by a three-dimensional surface indentation , 2017, Journal of Fluid Mechanics.

[84]  George Em Karniadakis,et al.  TetrahedralhpFinite Elements , 1996 .

[85]  Sailkat Dey,et al.  Curvilinear Mesh Generation in 3D , 1999, IMR.

[86]  D. Barkley,et al.  Transient growth analysis of flow through a sudden expansion in a circular pipe , 2010 .

[87]  Spencer J. Sherwin,et al.  A Discontinuous Spectral Element Model for Boussinesq-Type Equations , 2002, J. Sci. Comput..

[88]  D. Gottlieb,et al.  Numerical analysis of spectral methods , 1977 .

[89]  Spencer J. Sherwin,et al.  The next step in coastal numerical models: spectral/hp element methods? , 2005 .

[90]  J. Hesthaven,et al.  A level set discontinuous Galerkin method for free surface flows , 2006 .

[92]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[93]  Spencer J. Sherwin,et al.  Implicit Large-Eddy Simulation of a Wingtip Vortex , 2016 .

[94]  Dan S. Henningson,et al.  Coherent structures and dominant frequencies in a turbulent three-dimensional diffuser , 2012, Journal of Fluid Mechanics.

[95]  Eric Serre,et al.  A spectral vanishing viscosity for the LES of turbulent flows within rotating cavities , 2007, J. Comput. Phys..

[96]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[97]  Spencer J. Sherwin,et al.  A p-adaptation method for compressible flow problems using a goal-based error indicator , 2017 .

[98]  S. A. Maslowe,et al.  Elliptical instability of the Moore–Saffman model for a trailing wingtip vortex , 2016, Journal of Fluid Mechanics.

[99]  Fabien Marche,et al.  Discontinuous-GalerkinDiscretizationof aNewClass of Green-Naghdi Equations , 2015 .

[100]  George Em Karniadakis,et al.  De-aliasing on non-uniform grids: algorithms and applications , 2003 .

[101]  Claes Eskilsson,et al.  A stabilised nodal spectral element method for fully nonlinear water waves , 2015, J. Comput. Phys..

[102]  Eitan Tadmor,et al.  Legendre pseudospectral viscosity method for nonlinear conservation laws , 1993 .

[103]  Robert Michael Kirby,et al.  High-order spectral/hp element discretisation for reaction–diffusion problems on surfaces: Application to cardiac electrophysiology , 2014, J. Comput. Phys..

[104]  Hong Ma,et al.  A spectral element basin model for the shallow water equations , 1993 .

[105]  D. Peregrine Long waves on a beach , 1967, Journal of Fluid Mechanics.

[106]  Spencer J. Sherwin,et al.  Eigensolution analysis of spectral/hp continuous Galerkin approximations to advection-diffusion problems: Insights into spectral vanishing viscosity , 2016, J. Comput. Phys..

[107]  Andrew Pollard,et al.  Direct numerical simulation of compressible turbulent channel flows using the discontinuous Galerkin method , 2011 .

[108]  Spencer J. Sherwin,et al.  On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES / under-resolved DNS of Euler turbulence , 2017, J. Comput. Phys..

[109]  D. Barkley,et al.  Computational study of subcritical response in flow past a circular cylinder. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[110]  Michael A. Sprague,et al.  A spectral‐element method for modelling cavitation in transient fluid–structure interaction , 2004 .

[111]  David Moxey,et al.  Towards p-Adaptive Spectral/hp Element Methods for Modelling Industrial Flows , 2017 .

[112]  David Moxey,et al.  A Variational Framework for High-order Mesh Generation , 2016 .

[113]  Claus-Dieter Munz,et al.  High‐order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations , 2014 .

[114]  S. Sherwin,et al.  Convective instability and transient growth in flow over a backward-facing step , 2007, Journal of Fluid Mechanics.

[115]  Amik St-Cyr,et al.  A Dynamic hp-Adaptive Discontinuous Galerkin Method for Shallow-Water Flows on the Sphere with Application to a Global Tsunami Simulation , 2012 .

[116]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[117]  Spencer J. Sherwin,et al.  Velocity-correction schemes for the incompressible Navier-Stokes equations in general coordinate systems , 2016, J. Comput. Phys..

[118]  Mark Sussman,et al.  A Discontinuous Spectral Element Method for the Level Set Equation , 2003, J. Sci. Comput..

[119]  G. Burton Sobolev Spaces , 2013 .

[120]  Francis X. Giraldo,et al.  A discontinuous Galerkin method for the shallow water equations in spherical triangular coordinates , 2008, J. Comput. Phys..

[121]  Spencer J. Sherwin,et al.  Discontinuous Galerkin Spectral/hp Element Modelling of Dispersive Shallow Water Systems , 2005, J. Sci. Comput..

[122]  Danesh K. Tafti,et al.  Comparison of some upwind-biased high-order formulations with a second-order central-difference scheme for time integration of the incompressible Navier-Stokes equations , 1996 .

[123]  E. Lamballais,et al.  Evaluation of a high-order discontinuous Galerkin method for the DNS of turbulent flows , 2014 .

[124]  Xing Cai,et al.  A Finite Element Method for Fully Nonlinear Water Waves , 1998 .

[125]  Bernardo Cockburn,et al.  The Runge-Kutta local projection discontinous Galerkin finite element method for conservation laws , 1990 .

[126]  Spencer J. Sherwin,et al.  Spectral/hp discontinuous Galerkin methods for modelling 2D Boussinesq equations , 2006, J. Comput. Phys..

[127]  Spencer J. Sherwin,et al.  SPECTRAL ELEMENT STABILITY ANALYSIS OF VORTICAL FLOWS , 2006 .

[128]  Jean-François Remacle,et al.  A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows , 2006, J. Comput. Phys..

[129]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[130]  Robert Michael Kirby,et al.  From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low- and high-order discretisations , 2010, J. Comput. Phys..

[131]  Vladimir E. Zakharov,et al.  Stability of periodic waves of finite amplitude on the surface of a deep fluid , 1968 .

[132]  Spencer J. Sherwin,et al.  Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods , 2015, J. Comput. Phys..

[133]  R. Pasquetti,et al.  Spectral vanishing viscosity method for LES: sensitivity to the SVV control parameters , 2005 .

[134]  M Nowak,et al.  A combined numerical and experimental framework for determining permeability properties of the arterial media , 2015, Biomechanics and modeling in mechanobiology.

[135]  Jan S. Hesthaven,et al.  Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations , 2002 .

[136]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[137]  Q. W. Ma,et al.  Quasi ALE finite element method for nonlinear water waves , 2006, J. Comput. Phys..

[138]  Spencer J. Sherwin,et al.  Formulation of a Galerkin spectral element-fourier method for three-dimensional incompressible flows in cylindrical geometries , 2004 .

[139]  G. Rocco,et al.  Advanced instability methods using spectral/hp discretisations and their applications to complex geometries , 2014 .

[140]  S. Sherwin,et al.  Comparison of various fluid-structure interaction methods for deformable bodies , 2007 .

[141]  S. Sherwin,et al.  The behaviour of Tollmien–Schlichting waves undergoing small-scale localised distortions , 2016, Journal of Fluid Mechanics.

[142]  Spencer J. Sherwin,et al.  Optimising the performance of the spectral/hp element method with collective linear algebra operations , 2016 .

[143]  Sherwin,et al.  Tetrahedral hp Finite Elements : Algorithms and Flow Simulations , 1996 .

[144]  Géza Seriani,et al.  Numerical simulation of interface waves by high‐order spectral modeling techniques , 1992 .

[145]  Maurizio Brocchini,et al.  A reasoned overview on Boussinesq-type models: the interplay between physics, mathematics and numerics , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.