PreQual: An automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images

Purpose Diffusion weighted MRI imaging (DWI) is often subject to low signal-to-noise ratios (SNRs) and artifacts. Recent work has produced software tools that can correct individual problems, but these tools have not been combined with each other and with quality assurance (QA). A single integrated pipeline is proposed to perform DWI preprocessing with a spectrum of tools and produce an intuitive QA document. Methods The proposed pipeline, built around the FSL, MRTrix3, and ANTs software packages, performs DWI denoising; inter-scan intensity normalization; susceptibility-, eddy current-, and motion-induced artifact correction; and slice-wise signal drop-out imputation. To perform QA on the raw and preprocessed data and each preprocessing operation, the pipeline documents qualitative visualizations, quantitative plots, gradient verifications, and tensor goodness-of-fit and fractional anisotropy analyses. Results Raw DWI data were preprocessed and quality checked with the proposed pipeline and demonstrated improved SNRs; physiologic intensity ratios; corrected susceptibility-, eddy current-, and motion-induced artifacts; imputed signal-lost slices; and improved tensor fits. The pipeline identified incorrect gradient configurations and file-type conversion errors and was shown to be effective on externally available datasets. Conclusion The proposed pipeline is a single integrated pipeline that combines established diffusion preprocessing tools from major MRI-focused software packages with intuitive QA.

[1]  Christos Davatzikos,et al.  QSIPrep: An integrative platform for preprocessing and reconstructing diffusion MRI , 2020, bioRxiv.

[2]  Yogesh Rathi,et al.  White matter abnormalities across the lifespan of schizophrenia: a harmonized multi-site diffusion MRI study , 2019, Molecular Psychiatry.

[3]  Philip H. Ramsey Nonparametric Statistical Methods , 1974, Technometrics.

[4]  Jan Sijbers,et al.  Denoising of diffusion MRI using random matrix theory , 2016, NeuroImage.

[5]  Derek K. Jones,et al.  “Squashing peanuts and smashing pumpkins”: How noise distorts diffusion‐weighted MR data , 2004, Magnetic resonance in medicine.

[6]  R. Kikinis,et al.  A review of diffusion tensor imaging studies in schizophrenia. , 2007, Journal of psychiatric research.

[7]  S. Resnick,et al.  One-year age changes in MRI brain volumes in older adults. , 2000, Cerebral cortex.

[8]  Bibek Dhital,et al.  Gibbs‐ringing artifact removal based on local subvoxel‐shifts , 2015, Magnetic resonance in medicine.

[9]  Stamatios N. Sotiropoulos,et al.  An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging , 2016, NeuroImage.

[10]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[11]  A. Dale,et al.  Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. , 2010, Cerebral cortex.

[12]  Daniel P. Kennedy,et al.  Enhancing studies of the connectome in autism using the autism brain imaging data exchange II , 2017, Scientific Data.

[13]  Francesco Tomasello,et al.  The Impact of Diffusion Tensor Imaging Fiber Tracking of the Corticospinal Tract Based on Navigated Transcranial Magnetic Stimulation on Surgery of Motor-Eloquent Brain Lesions , 2018, Neurosurgery.

[14]  P. Szeszko,et al.  MRI atlas of human white matter , 2006 .

[15]  Paul M. Thompson,et al.  Fractional anisotropy of cerebral white matter and thickness of cortical gray matter across the lifespan , 2011, NeuroImage.

[16]  Do P. M. Tromp,et al.  Diffusion Tensor Imaging in Autism Spectrum Disorder: A Review , 2012, Autism research : official journal of the International Society for Autism Research.

[17]  Chun-Hung Yeh,et al.  MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation , 2019, NeuroImage.

[18]  P. Bhattacharya Diffusion MRI: Theory, methods, and applications, Derek K. Jones (Ed.). Oxford University press (2011), $152.77 , 2012 .

[19]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[20]  Sergiu Groppa,et al.  Characterizing Microstructural Tissue Properties in Multiple Sclerosis with Diffusion MRI at 7 T and 3 T: The Impact of the Experimental Design , 2019, Neuroscience.

[21]  Arno Klein,et al.  Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements , 2014, NeuroImage.

[22]  Paul M. Thompson,et al.  Robust Brain Extraction Across Datasets and Comparison With Publicly Available Methods , 2011, IEEE Transactions on Medical Imaging.

[23]  Derek K. Jones Diffusion MRI: Theory, methods, and applications , 2011 .

[24]  D. Ryan Ormond,et al.  Current Applications of Diffusion Tensor Imaging and Tractography in Intracranial Tumor Resection , 2019, Front. Oncol..

[25]  Yi Wang,et al.  Quality control of diffusion weighted images , 2010, Medical Imaging.

[26]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[27]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[28]  Peter A. Calabresi,et al.  Tract probability maps in stereotaxic spaces: Analyses of white matter anatomy and tract-specific quantification , 2008, NeuroImage.

[29]  Bennett A. Landman,et al.  Simultaneous Analysis and Quality Assurance for Diffusion Tensor Imaging , 2013, PloS one.

[30]  Carlo Pierpaoli,et al.  TORTOISE v 3 : Improvements and New Features of the NIH Diffusion MRI Processing Pipeline , 2018 .

[31]  R. Kikinis,et al.  Interactive Diffusion Tensor Tractography Visualization for Neurosurgical Planning , 2011, Neurosurgery.

[32]  Martin Styner,et al.  DTIPrep: quality control of diffusion-weighted images , 2014, Front. Neuroinform..

[33]  Jelle Veraart,et al.  TE dependent Diffusion Imaging (TEdDI) distinguishes between compartmental T 2 relaxation times , 2017, NeuroImage.

[34]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[35]  Carlo Pierpaoli,et al.  DR-BUDDI (Diffeomorphic Registration for Blip-Up blip-Down Diffusion Imaging) method for correcting echo planar imaging distortions , 2015, NeuroImage.

[36]  Jelle Veraart,et al.  Diffusion MRI noise mapping using random matrix theory , 2016, Magnetic resonance in medicine.

[37]  Randy L. Gollub,et al.  Reproducibility of quantitative tractography methods applied to cerebral white matter , 2007, NeuroImage.

[38]  Hui Zhang,et al.  Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement , 2017, NeuroImage.

[39]  D. Le Bihan,et al.  Artifacts and pitfalls in diffusion MRI , 2006, Journal of magnetic resonance imaging : JMRI.

[40]  Benjamin N. Conrad,et al.  MASiVar: Multisite, Multiscanner, and Multisubject Acquisitions for Studying Variability in Diffusion Weighted Magnetic Resonance Imaging , 2020, bioRxiv.

[41]  Christopher Rorden,et al.  The first step for neuroimaging data analysis: DICOM to NIfTI conversion , 2016, Journal of Neuroscience Methods.

[42]  Ragini Verma,et al.  The impact of quality assurance assessment on diffusion tensor imaging outcomes in a large-scale population-based cohort , 2016, NeuroImage.

[43]  I. Rossman,et al.  Normal Human Aging: The Baltimore Longitudinal Study of Aging , 1986 .

[44]  Nancy Kanwisher,et al.  Spurious group differences due to head motion in a diffusion MRI study , 2013, NeuroImage.

[45]  Ragini Verma,et al.  The impact of in-scanner head motion on structural connectivity derived from diffusion MRI , 2018, NeuroImage.

[46]  Alan Connelly,et al.  MRtrix: Diffusion tractography in crossing fiber regions , 2012, Int. J. Imaging Syst. Technol..

[47]  Cheng Guan Koay,et al.  Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. , 2006, Journal of magnetic resonance.

[48]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[49]  S. Wakana,et al.  MRI Atlas of Human White Matter , 2005 .

[50]  Jelle Veraart,et al.  Evaluation of the accuracy and precision of the diffusion parameter EStImation with Gibbs and NoisE removal pipeline , 2018, NeuroImage.

[51]  Jan Sijbers,et al.  Weighted linear least squares estimation of diffusion MRI parameters: Strengths, limitations, and pitfalls , 2013, NeuroImage.

[52]  J C Gore,et al.  Analysis and correction of motion artifacts in diffusion weighted imaging , 1994, Magnetic resonance in medicine.

[53]  Giuseppe Scotti,et al.  Motor and language DTI Fiber Tracking combined with intraoperative subcortical mapping for surgical removal of gliomas , 2008, NeuroImage.

[54]  Hui Zhang,et al.  Susceptibility-induced distortion that varies due to motion: Correction in diffusion MR without acquiring additional data , 2017, NeuroImage.

[55]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[56]  Paul M. Thompson,et al.  Diffusion MRI Indices and Their Relation to Cognitive Impairment in Brain Aging: The Updated Multi-protocol Approach in ADNI3 , 2018, bioRxiv.

[57]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[58]  Stamatios N. Sotiropoulos,et al.  Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images , 2016, NeuroImage.

[59]  M. Inglese,et al.  Diffusion imaging in multiple sclerosis: research and clinical implications , 2010 .

[60]  Bennett A Landman,et al.  A fiber coherence index for quality control of B-table orientation in diffusion MRI scans. , 2019, Magnetic resonance imaging.

[61]  Thomas E. Nichols,et al.  Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects , 2018, NeuroImage.

[62]  David Arenberg,et al.  Normal Human Aging: The Baltimore Longitudinal Study on Aging , 1984 .

[63]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[64]  C. Westin,et al.  An introduction to diffusion tensor image analysis. , 2011, Neurosurgery clinics of North America.

[65]  Alex Fornito,et al.  The efficacy of different preprocessing steps in reducing motion-related confounds in diffusion MRI connectomics , 2020, NeuroImage.

[66]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[67]  Joseph V. Hajnal,et al.  Complex diffusion-weighted image estimation via matrix recovery under general noise models , 2018, NeuroImage.

[68]  Bennett A Landman,et al.  Distortion correction of diffusion weighted MRI without reverse phase-encoding scans or field-maps , 2020, bioRxiv.

[69]  Sean P. Fitzgibbon,et al.  Automated quality control for within and between studies diffusion MRI data using a non-parametric framework for movement and distortion correction , 2019, NeuroImage.

[70]  Jan Sijbers,et al.  Automated correction of improperly rotated diffusion gradient orientations in diffusion weighted MRI , 2014, Medical Image Anal..

[71]  N. Otsu A threshold selection method from gray level histograms , 1979 .