The Generalized Baues Problem for Cyclic Polytopes I

An important special case of the generalized Baues problem asks whether the order complex of all proper polyhedral subdivisions of a given point configuration, partially ordered by refinement, is homotopy equivalent to a sphere. In this paper, an affirmative answer is given for the vertex sets of cyclic polytopes in all dimensions. This yields the first non-trivial class of point configurations with neither a bound on the dimension, the codimension, nor the number of vertices for which this is known to be true. Moreover, it is shown that all triangulations of cyclic polytopes are lifting triangulations. This contrasts the fact that in general there are many non-regular triangulations of cyclic polytopes. Beyond this, we find triangulations of C(11, 5) with flip deficiency. This proves?among other things?that there are triangulations of cyclic polytopes that are non-regular for every choice of points on the moment curve.

[1]  G. Ziegler,et al.  Ziegler Extension Spaces of Oriented Matr iods , 1991 .

[2]  Birkett Huber,et al.  The Cayley Trick, lifting subdivisions and the Bohne-Dress theorem on zonotopal tilings , 2000 .

[3]  Jörg Rambau,et al.  Polyhedral Subdivisions and Projections of Polytopes , 1996 .

[4]  Jesús A. De Loera,et al.  The polytope of all triangulations of a point configuration , 1996, Documenta Mathematica.

[5]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[6]  B. Sturmfels Oriented Matroids , 1993 .

[7]  Bernd Sturmfels,et al.  Extension spaces of oriented matroids , 1993, Discret. Comput. Geom..

[8]  Jörg Rambau,et al.  On Subdivision Posets of Cyclic Polytopes , 2000, Eur. J. Comb..

[9]  Francisco Santos,et al.  Triangulations of oriented matroids , 2002 .

[10]  Jesús A. De Loera,et al.  Fiber Polytopes for the Projections between Cyclic Polytopes , 2000, Eur. J. Comb..

[11]  Victor Reiner,et al.  Visibility Complexes and the Baues Problem for Triangulations in the Plane , 1998, Discret. Comput. Geom..

[12]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[13]  Eric Kendall Babson A combinatorial flag space , 1993 .

[14]  Bernd Sturmfels,et al.  Cellular strings on polytopes , 1994 .

[15]  Jörg Rambau,et al.  Projections of polytopes and the generalized baues conjecture , 1996, Discret. Comput. Geom..

[16]  Jesús A. De Loera,et al.  Triangulations of polytopes and computational algebra , 1995 .

[17]  Jesús A. De Loera,et al.  The Number of Geometric Bistellar Neighbors of a Triangulation , 1999, Discret. Comput. Geom..

[18]  Victor Reiner,et al.  The Generalized Baues Problem , 1999 .

[19]  Victor Reiner,et al.  The higher Stasheff-Tamari posets , 1996 .

[20]  Bernd Sturmfels,et al.  Constructions and complexity of secondary polytopes , 1990 .

[21]  G. Ziegler Lectures on Polytopes , 1994 .

[22]  Jörg Rambau,et al.  Triangulations of cyclic polytopes and higher Bruhat orders , 1997 .

[23]  P. Wilson,et al.  DISCRIMINANTS, RESULTANTS AND MULTIDIMENSIONAL DETERMINANTS (Mathematics: Theory and Applications) , 1996 .

[24]  A. Björner Topological methods , 1996 .

[25]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .