Nonexistence results for a class of fractional elliptic boundary value problems

Abstract In this paper we study a class of fractional elliptic problems of the form { ( − Δ ) s u = f ( x , u ) in Ω , u = 0 in R N ∖ Ω , where s ∈ ( 0 , 1 ) . We prove nonexistence of positive solutions when Ω is star-shaped and f is supercritical. We also derive a nonexistence result for subcritical f in some unbounded domains. The argument relies on the method of moving spheres applied to a reformulated problem using the Caffarelli–Silvestre extension (Caffarelli and Silvestre (2007) [11] ) of a solution of the above problem.

[1]  Luis Silvestre,et al.  Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian , 2007, math/0702392.

[2]  C. Brändle,et al.  A concave—convex elliptic problem involving the fractional Laplacian , 2010, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[3]  James Serrin,et al.  A symmetry problem in potential theory , 1971 .

[4]  Enrico Valdinoci,et al.  Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result , 2008, 0801.2355.

[5]  Meijun Zhu,et al.  Uniqueness theorems through the method of moving spheres , 1995 .

[6]  Wenxiong Chen,et al.  Classification of solutions for an integral equation , 2006 .

[7]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[8]  S. Chang,et al.  Fractional Laplacian in conformal geometry , 2010, 1003.0398.

[9]  Enrico Valdinoci,et al.  Variational methods for non-local operators of elliptic type , 2012 .

[10]  E. Stein,et al.  Fractional Integrals on n-Dimensional Euclidean Space , 1958 .

[11]  W. Reichel,et al.  Non-Existence Results for Semilinear Cooperative Elliptic Systems via Moving Spheres , 2000 .

[12]  O. Savin,et al.  Nonlocal minimal surfaces , 2009, 0905.1183.

[13]  T. Hasanis,et al.  A characteristic property of the sphere , 1977 .

[14]  Henri Berestycki,et al.  On the method of moving planes and the sliding method , 1991 .

[15]  Jinggang Tan,et al.  The Brezis–Nirenberg type problem involving the square root of the Laplacian , 2011 .

[16]  Louis Dupaigne,et al.  Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations , 2010, 1004.1906.

[17]  Xavier Cabre,et al.  Positive solutions of nonlinear problems involving the square root of the Laplacian , 2009, 0905.1257.

[18]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[19]  L. Caffarelli,et al.  Nonlocal minimal surfaces , 2009, 0905.1183.

[20]  B. Gidas,et al.  Symmetry and related properties via the maximum principle , 1979 .

[21]  K. Bogdan,et al.  On Kelvin Transformation , 2006 .

[22]  W. Reichel Uniqueness Theorems For Variational Problems By The Method Of Transformation Groups , 2004 .

[23]  Yannick Sire,et al.  Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates , 2010, 1012.0867.

[24]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[25]  A. Alexandrov A characteristic property of spheres , 1962 .

[26]  Comparison results and steady states for the Fujita equation with fractional Laplacian , 2003, math/0302353.

[27]  Elliott H. Lieb,et al.  Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators , 2006 .

[28]  Bei Hu Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition , 1994, Differential and Integral Equations.