Gas-kinetic schemes for direct numerical simulations of compressible homogeneous turbulence.

We apply the gas-kinetic scheme (GKS) for the direct numerical simulations (DNSs) of compressible decaying homogeneous isotropic turbulence (DHIT). We intend to study the accuracy, stability, and efficiency of the gas-kinetic scheme for DNS of compressible homogeneous turbulence depending on both flow conditions and numerics. In particular, we study the GKS with multidimensional, quasi-one-dimensional, dimensional-splitting, and smooth-flow approximations. We simulate the compressible DHIT with the Taylor microscale Reynolds number Re(lambda)=72.0 and the turbulence Mach number Ma(t) between 0.1 and 0.6. We compute the low-order statistical quantities including the total kinetic energy K(t), the dissipation rate epsilon(t), the skewness S(u)(t), and the flatness F(u)(t) of the velocity field u(x,t). We assess the effects on the turbulence statistics due to the approximations made in the treatment of fluxes, the flux limiter, the accuracy of the interpolation, and the bulk viscosity. Our results show that the GKS is adequate for DNS of compressible homogeneous turbulence as far as the low-order turbulence statistics are concerned.

[1]  Xin He,et al.  Multiple temperature kinetic model and gas-kinetic method for hypersonic non-equilibrium flow computations , 2008, J. Comput. Phys..

[2]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[3]  Holger Foysi,et al.  Compressibility effects and turbulence scalings in supersonic channel flow , 2004, Journal of Fluid Mechanics.

[4]  Song Fu,et al.  Numerical simulation of high-speed planar mixing layer , 2003 .

[5]  Yongsheng Lian,et al.  A Gas-kinetic Scheme for Reactive Flows , 1998 .

[6]  Kun Xu,et al.  A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow , 2005 .

[7]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[8]  M. Pino Martin,et al.  Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments , 2007, Journal of Fluid Mechanics.

[9]  Kun Xu,et al.  One-dimensional multiple-temperature gas-kinetic Bhatnagar-Gross-Krook scheme for shock wave computation , 2008 .

[10]  Kun Xu,et al.  Microchannel flow in the slip regime: gas-kinetic BGK–Burnett solutions , 2004, Journal of Fluid Mechanics.

[11]  Song Fu,et al.  Numerical Simulation of Compressible Mixing Layers , 2006 .

[12]  Song Fu,et al.  On the multidimensional gas-kinetic BGK scheme , 2006, J. Comput. Phys..

[13]  M. Delanaye,et al.  Quadratic-Reconstruction Finite Volume Scheme for Compressible Flows on Unstructured Adaptive Grids , 1997 .

[14]  V. Gregory Weirs,et al.  A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence , 2006, J. Comput. Phys..

[15]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[16]  C. Zemach,et al.  Symmetries and the approach to statistical equilibrium in isotropic turbulence , 1998 .

[17]  Minwei Wu,et al.  Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data , 2007, Journal of Fluid Mechanics.

[18]  Jack R. Edwards,et al.  Numerical simulations of shock/boundary layer interactions using time-dependent modeling techniques: A survey of recent results , 2008 .

[19]  Kun Xu,et al.  BGK-Based Scheme for Multicomponent Flow Calculations , 1997 .

[20]  Kun Xu,et al.  Lattice Boltzmann method and gas-kinetic BGK scheme in the low-Mach number viscous flow simulations , 2003 .

[21]  Kun Xu,et al.  The numerical study of roll‐waves in inclined open channels and solitary wave run‐up , 2006 .

[22]  Kun Xu,et al.  A well-balanced gas-kinetic scheme for the shallow-water equations with source terms , 2002 .

[23]  Kun Xu,et al.  Gas-Kinetic Theory-Based Flux Splitting Method for Ideal Magnetohydrodynamics , 1999 .

[24]  T. Passot,et al.  Numerical simulation of compressible homogeneous flows in the turbulent regime , 1987, Journal of Fluid Mechanics.

[25]  Kun Xu,et al.  A high-order gas-kinetic method for multidimensional ideal magnetohydrodynamics , 2000 .

[26]  S. Fu,et al.  Large-scale vortices in high-speed mixing layers , 2003 .

[27]  Kun Xu,et al.  A gas-kinetic scheme for shallow-water equations with source terms , 2004 .

[28]  Kun Xu,et al.  A Slope-Update Scheme for Compressible Flow Simulation , 2002 .

[29]  M. Pino Martín,et al.  Stencil Adaptation Properties of a WENO Scheme in Direct Numerical Simulations of Compressible Turbulence , 2007, J. Sci. Comput..

[30]  S. Orszag,et al.  Enstrophy budget in decaying compressible turbulence , 1990 .

[31]  Kun Xu,et al.  A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method , 2001 .

[32]  Parviz Moin,et al.  Higher entropy conservation and numerical stability of compressible turbulence simulations , 2004 .

[33]  C. K. Madnia,et al.  Characteristics of chemically reacting compressible homogeneous turbulence , 2000 .

[34]  Kun Xu,et al.  Gas-Kinetic Scheme for Continuum and Near-Continuum Hypersonic Flows , 2007 .

[35]  Kun Xu,et al.  The kinetic scheme for the full-Burnett equations , 2004 .

[36]  Kun Xu,et al.  Nonequilibrium Bhatnagar-Gross-Krook model for nitrogen shock structure , 2004 .

[37]  Minwei Wu,et al.  Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp , 2007 .

[38]  Sanjiva K. Lele,et al.  Compressibility Effects on Turbulence , 1994 .

[39]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[40]  Pramod K. Subbareddy,et al.  A fully discrete, kinetic energy consistent finite-volume scheme for compressible flows , 2009, J. Comput. Phys..

[41]  Taku Ohwada,et al.  Simple derivation of high-resolution schemes for compressible flows by kinetic approach , 2006 .

[42]  Small scale structure of homogeneous turbulent shear flow , 2004, physics/0404108.

[43]  Nagi N. Mansour,et al.  Compressibility effects on the growth and structure of homogeneous turbulent shear flow , 1993, Journal of Fluid Mechanics.

[44]  Ravi Samtaney,et al.  Direct numerical simulation of decaying compressible turbulence and shocklet statistics , 2001 .

[45]  Gordon Erlebacher,et al.  The analysis and modelling of dilatational terms in compressible turbulence , 1989, Journal of Fluid Mechanics.

[46]  G.,et al.  TOWARD THE LARGE-EDDY SIMULATION OF COMPRESSIBLE TURBULENT FLOWS , 2022 .

[47]  Yongsheng Lian,et al.  No . 99-28 A Gas-kinetic Scheme for Multimaterial Flows and Its Application in Chemical Reaction , 2022 .

[48]  Taku Ohwada,et al.  On the Construction of Kinetic Schemes , 2002 .

[49]  Kun Xu,et al.  Linear and nonlinear analysis of shallow wakes , 2006, Journal of Fluid Mechanics.

[50]  Steven A. Orszag,et al.  Energy and spectral dynamics in forced compressible turbulence , 1990 .

[51]  Hongwei Liu,et al.  A comparative study of the LBE and GKS methods for 2D near incompressible laminar flows , 2008, J. Comput. Phys..

[52]  Song Fu,et al.  Application of gas-kinetic scheme with kinetic boundary conditions in hypersonic flow , 2005 .

[53]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[54]  M. Pino Martín,et al.  Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence , 2007, J. Comput. Phys..

[55]  Kun Xu,et al.  Modified gas-kinetic scheme for shock structures in argon , 2008 .

[56]  Antony Jameson,et al.  An improved gas-kinetic BGK finite-volume method for three-dimensional transonic flow , 2007, J. Comput. Phys..

[57]  Parviz Moin,et al.  EDDY SHOCKLETS IN DECAYING COMPRESSIBLE TURBULENCE , 1991 .

[58]  Song Fu,et al.  A compressible Navier-Stokes flow solver with scalar transport , 2005 .