Modal interfaces: unifying interface automata and modal specifications

This paper presents a unification of interface automata and modal specifications, two radically dissimilar models for interface theories. Interface automata is a game-based model, which allows to make assumptions on the environment and propose an optimistic view for composition : two components can be composed if there is an environment where they can work together. Modal specification is a language theoretic account of a fragment of the modal mu-calculus logic that is more complete but which does not allow to distinguish between the environment and the component. Partial unifications of these two frameworks have been explored recently. A first attempt by Larsen et al. considers modal interfaces, an extension of modal specifications that deals with compatibility issues in the composition operator. However, this composition operator is incorrect. A second attempt by Raclet et al. gives a different perspective, and emphasises on conjunction and residuation of modal specifications, including when interfaces have dissimilar alphabets, but disregards interface compatibility. The present paper contributes a thorougher unification of the two theories by correcting the modal interface composition operator presented in the paper by Larsen et al., drawing a complete picture of the modal interface algebra, and pushing even further the comparison between interface automata, modal automata and modal interfaces.

[1]  Thomas A. Henzinger,et al.  Timed Interfaces , 2002, EMSOFT.

[2]  Edward A. Lee,et al.  Taming heterogeneity - the Ptolemy approach , 2003, Proc. IEEE.

[3]  Thomas A. Henzinger,et al.  Interface theories with component reuse , 2008, EMSOFT '08.

[4]  Guillaume Feuillade Modal specifications are a syntactic fragment of the Mu-calculus , 2005 .

[5]  Thomas A. Henzinger,et al.  Alternating Refinement Relations , 1998, CONCUR.

[6]  Kim G. Larsen,et al.  Playing Games with Timed Games , 2009, ADHS.

[7]  Joseph Sifakis,et al.  Automatic Verification Methods for Finite State Systems , 1989, Lecture Notes in Computer Science.

[8]  Axel Legay,et al.  Sociable Interfaces , 2005, FroCoS.

[9]  Thomas A. Henzinger,et al.  Alternating-time temporal logic , 1999 .

[10]  Kim G. Larsen,et al.  Modal I/O Automata for Interface and Product Line Theories , 2007, ESOP.

[11]  Luca de Alfaro,et al.  Game Models for Open Systems , 2003, Verification: Theory and Practice.

[12]  Thomas A. Henzinger,et al.  The Element of Surprise in Timed Games , 2003, CONCUR.

[13]  Walter Vogler,et al.  Conjunction on processes: Full abstraction via ready-tree semantics , 2007, Theor. Comput. Sci..

[14]  C. A. R. Hoare,et al.  Stuck-Free Conformance , 2004, CAV.

[15]  Nicolas Markey,et al.  Timed Concurrent Game Structures , 2007, CONCUR.

[16]  J. F. M. Burg,et al.  Linguistic instruments in requirements engineering , 1996 .

[17]  Thomas A. Henzinger,et al.  Synchronous and Bidirectional Component Interfaces , 2002, CAV.

[18]  Thomas A. Henzinger,et al.  The Embedded Systems Design Challenge , 2006, FM.

[19]  Roberto Passerone,et al.  Why Are Modalities Good for Interface Theories? , 2009, 2009 Ninth International Conference on Application of Concurrency to System Design.

[20]  Kim G. Larsen,et al.  Modal Specifications , 1989, Automatic Verification Methods for Finite State Systems.

[21]  Jean-Baptiste Raclet,et al.  Residual for Component Specifications , 2008, Electron. Notes Theor. Comput. Sci..

[22]  Sjouke Mauw,et al.  Message Sequence Chart (MSC) , 1996 .

[23]  Joseph Sifakis,et al.  A Notion of Glue Expressiveness for Component-Based Systems , 2008, CONCUR.

[24]  Maurice Nivat,et al.  Metric Interpretations of Infinite Trees and Semantics of non Deterministic Recursive Programs , 1980, Theor. Comput. Sci..

[25]  Thomas A. Henzinger,et al.  Interface automata , 2001, ESEC/FSE-9.

[26]  Nancy A. Lynch,et al.  An introduction to input/output automata , 1989 .

[27]  Kim G. Larsen,et al.  On Modal Refinement and Consistency , 2007, CONCUR.

[28]  Nathalie Bertrand,et al.  Refinement and Consistency of Timed Modal Specifications , 2009, LATA.

[29]  David Harel,et al.  LSCs: Breathing Life into Message Sequence Charts , 1999, Formal Methods Syst. Des..

[30]  Jean-Baptiste Raclet Quotient de spécifications pour la réutilisation de composants , 2007 .