Quorum Sensing in Gram-Negative Bacteria

It has become increasingly and widely recognised that bacteria do not live as isolated entities but instead exist as communities that exploit elaborate systems of intercellular communication to facilitate their adaptation to changing environmental conditions. A well-characterised example of such intercellular communication is quorum sensing. Quorum sensing depends on the production of diffusible signal molecules termed autoinducers or pheromones, which enable a bacterium to monitor its own cell population density. A variety of physiological processes in a range of bacterial species is regulated by quorum sensing. Examples include bioluminescence, antibiotic biosynthesis, swarming, biofilm differentiation, conjugation and the production of virulence determinants in animal, fish and plant pathogens. The best studied common signalling molecules found in Gram-negative bacteria are N-acyl derivatives of homoserine lactone (acyl HSLs). In this paper, the current state of research concerning acyl HSL-mediated quorum sensing in Gram-negative bacteria is reviewed.

[1]  N. Thomson,et al.  12 Virulence Determinants in the Bacterial Phytopathogen Erwinia , 1999 .

[2]  D. Coplin,et al.  A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[3]  M. Sebaihia,et al.  Analysis of the carbapenem gene cluster of Erwinia carotovora: definition of the antibiotic biosynthetic genes and evidence for a novel β‐lactam resistance mechanism , 1997, Molecular microbiology.

[4]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[5]  S. Atkinson,et al.  A hierarchical quorum‐sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping , 1999, Molecular microbiology.

[6]  M. Sebaihia,et al.  Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. , 1995, Microbiology.

[7]  P. Li,et al.  TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[8]  M. Winson,et al.  Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1 , 1995, Molecular microbiology.

[9]  J. Costerton,et al.  The involvement of cell-to-cell signals in the development of a bacterial biofilm. , 1998, Science.

[10]  S. Long,et al.  Bacteroid formation in the Rhizobium-legume symbiosis. , 1999, Current opinion in microbiology.

[11]  M. Sebaihia,et al.  Analysis of bacterial carbapenem antibiotic production genes reveals a novel β‐lactam biosynthesis pathway , 1996, Molecular microbiology.

[12]  E. Meighen,et al.  A new Vibrio fischeri lux gene precedes a bidirectional termination site for the lux operon , 1990, Journal of bacteriology.

[13]  J. S. Wells,et al.  SQ 27,860, a simple carbapenem produced by species of Serratia and Erwinia. , 1982, The Journal of antibiotics.

[14]  M. Gambello,et al.  LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression , 1993, Infection and immunity.

[15]  J. Reiser,et al.  Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[16]  E. Meighen,et al.  Genetics of bacterial bioluminescence. , 1994, Annual review of genetics.

[17]  S. Farrand,et al.  Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by an N-acylhomoserine lactone autoinducer , 1995, Journal of bacteriology.

[18]  S. C. Winans,et al.  Transcription of the octopine catabolism operon of the Agrobacterium tumor-inducing plasmid pTiA6 is activated by a LysR-type regulatory protein. , 1991, Molecular plant-microbe interactions : MPMI.

[19]  J. Downie,et al.  Identification of a rhizosphere protein encoded by the symbiotic plasmid of Rhizobium leguminosarum , 1984, Journal of bacteriology.

[20]  G. Hayman,et al.  Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[21]  M. Cámara,et al.  Quorum sensing in Vibrio anguillarum: characterization of the vanI/vanR locus and identification of the autoinducer N-(3-oxodecanoyl)-L-homoserine lactone , 1997, Journal of bacteriology.

[22]  M. Winson,et al.  Chitinolytic Activity in Chromobacterium violaceum: Substrate Analysis and Regulation by Quorum Sensing , 1998, Journal of bacteriology.

[23]  G. Salmond,et al.  A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in Erwinia. , 1992, Gene.

[24]  V. Deretic,et al.  Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. , 1996, Microbiological reviews.

[25]  F. Gong,et al.  Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium. Pseudomonas aureofaciens 30-84. , 1995, FEMS microbiology letters.

[26]  M. Silverman,et al.  Identification of genes and gene products necessary for bacterial bioluminescence. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[27]  G. Salmond,et al.  Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[28]  E. Greenberg,et al.  Cell-to-cell signaling in the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum: autoinduction of a stationary phase and rhizosphere-expressed genes , 1996, Journal of bacteriology.

[29]  E. Greenberg,et al.  Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes , 1997, Journal of bacteriology.

[30]  D. Ohman,et al.  Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family , 1995, Journal of bacteriology.

[31]  E. Greenberg,et al.  Quorum Sensing in Burkholderia cepacia: Identification of the LuxRI Homologs CepRI , 1999, Journal of bacteriology.

[32]  and M C M Perombelon,et al.  Ecology of the Soft Rot Erwinias , 1980 .

[33]  S. Farrand,et al.  Hierarchical gene regulatory systems arising from fortuitous gene associations: controlling quorum sensing by the opine regulon in Agrobacterium , 1999, Molecular microbiology.

[34]  N. A. Whitehead,et al.  Quorum-sensing in Gram-negative bacteria. , 2001, FEMS microbiology reviews.

[35]  R. Blosser,et al.  Extraction of violacein from Chromobacterium violaceum provides a new quantitative bioassay for N-acyl homoserine lactone autoinducers. , 2000, Journal of microbiological methods.

[36]  E. Greenberg,et al.  Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators , 1994, Journal of bacteriology.

[37]  G. Pessi,et al.  Transcriptional Control of the Hydrogen Cyanide Biosynthetic Genes hcnABC by the Anaerobic Regulator ANR and the Quorum-Sensing Regulators LasR and RhlR inPseudomonas aeruginosa , 2000, Journal of bacteriology.

[38]  T. Cavalier-smith Origins of secondary metabolism. , 2007, Ciba Foundation symposium.

[39]  M. Gambello,et al.  Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. , 1993, Science.

[40]  P. Reeves,et al.  The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. , 1993, The EMBO journal.

[41]  F. Wisniewski-Dyé,et al.  Analysis of Quorum-Sensing-Dependent Control of Rhizosphere-Expressed (rhi) Genes in Rhizobium leguminosarum bv. viciae , 1999, Journal of bacteriology.

[42]  M. Pirhonen,et al.  A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. , 1993, The EMBO journal.

[43]  K. Tanaka,et al.  A hierarchical quorum‐sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary‐phase sigma factor RpoS , 1996, Molecular microbiology.

[44]  Stephen K. Farrand,et al.  Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction , 1993, Nature.

[45]  Ann M Stock,et al.  Two-component signal transduction. , 2000, Annual review of biochemistry.

[46]  E. Meighen,et al.  A homoserine lactone autoinducer regulates virulence of an insect-pathogenic bacterium, Xenorhabdus nematophilus (Enterobacteriaceae) , 1997, Journal of bacteriology.

[47]  M K Winson,et al.  Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules , 1997, Journal of bacteriology.

[48]  J. Vanderleyden,et al.  The Rhizobium-plant symbiosis. , 1995, Microbiological reviews.

[49]  S. Farrand,et al.  Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. , 1998, Molecular plant-microbe interactions : MPMI.

[50]  S. C. Winans,et al.  Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Chunfang ZHANGt Pseudomonas aeruginosa. , 1966, Lancet.

[52]  M. Gambello,et al.  Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression , 1991, Journal of bacteriology.

[53]  Jun Zhu,et al.  The Bases of Crown Gall Tumorigenesis , 2000, Journal of bacteriology.

[54]  B. Iglewski,et al.  Cell-to-cell signaling and Pseudomonas aeruginosa infections. , 1998, Emerging infectious diseases.

[55]  E. Greenberg,et al.  Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[56]  G. Salmond,et al.  5.5 Extracellular Enzymes and Their Role in Erwinia Virulence , 1998 .

[57]  D. Wood,et al.  The phzI gene of Pseudomonas aureofaciens 30-84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. , 1996, Gene.

[58]  Richard Phipps,et al.  The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)homoserine lactone contributes to virulence and induces inflammation in , 2002 .

[59]  K. Cann Principles and practice of infectious disease , 1990 .

[60]  T. Baldwin,et al.  Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC7744. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[61]  N. Thomson,et al.  Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control , 2000, Molecular microbiology.

[62]  D. Wood,et al.  Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density , 1994, Journal of bacteriology.

[63]  M. Cámara,et al.  Characterisation of the yenI/yenR locus from Yersinia enterocolitica mediating the synthesis of two N‐acylhomoserine lactone signal molecules , 1995, Molecular microbiology.

[64]  A Fiechter,et al.  Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa , 1994, Journal of bacteriology.

[65]  P. Seed,et al.  Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa , 1997, Journal of bacteriology.

[66]  E. Greenberg,et al.  Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.