High-Resolution NMR of Solids

Several important NMR interactions are manifested in the solid state as signal broadening mechanisms (Maciel 1984; Oldfield and Kirkpatrick 1985; Opella et al 1981). Rapid tumbling in the liquid state averages orientation dependence, so these interactions appear (when they appear at all) as T1 relaxation mechanisms rather than as line broadening effects (Lyerla et al 1974). The most important of these are chemical shift anisotropy, dipolar coupling, conformation effects, and quadrupole splittings.

[1]  B. C. Gerstein High-resolution n.m.r. in solids with strong homonuclear dipolar broadening: combined multiple-pulse decoupling and magic angle spinning , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[2]  R. Wind,et al.  Applications of dynamic nuclear polarization in 13C NMR in solids , 1985 .

[3]  W. S. Veeman,et al.  NMR images of rotating solids , 1988 .

[4]  L. Jelinski,et al.  The observation of chain motion in macromolecules by carbon-13 and deuterium nuclear magnetic resonance spectroscopy , 1985 .

[5]  W. S. Veeman 13C chemical shift tensors in organic single crystals , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[6]  A. N. Garroway,et al.  Resolution in 13C NMR of organic solids using high-power proton decoupling and magic-angle sample spinning , 1981 .

[7]  S. Opella,et al.  Selection of nonprotonated carbon resonances in solid-state nuclear magnetic resonance , 1979 .

[8]  R. Wind,et al.  High-speed magic-angle spinning , 1986 .

[9]  E. Oldfield,et al.  High-Resolution Nuclear Magnetic Resonance of Inorganic Solids , 1985, Science.

[10]  Alexander Pines,et al.  Proton‐enhanced NMR of dilute spins in solids , 1973 .

[11]  N. Szeverenyi,et al.  NMR spin imaging of magnetically dilute nuclei in the solid state , 1984 .

[12]  E. R. Andrew Magic angle spinning in solid state n.m.r. spectroscopy , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[13]  R. Wind,et al.  Experimental setup for enhanced 13C NMR spectroscopy in solids using dynamic nuclear polarization , 1983 .

[14]  S. Opella,et al.  Solid state n.m.r. of biopolymers , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[15]  E. Hahn,et al.  Nuclear Double Resonance in the Rotating Frame , 1962 .

[16]  G. Maciel,et al.  Proton NMR study of dehydration of the silica gel surface , 1988 .

[17]  A. N. Garroway,et al.  13C NMR rotating frame relaxation in a solid with strongly coupled protons: Polyethylene , 1979 .

[18]  A. N. Garroway,et al.  13C n.m.r. in organic solids: limits to spectral resolution and to determination of molecular motion , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[19]  G. Maciel,et al.  Combined rotation and multiple pulse spectroscopy as an analytical proton nuclear magnetic resonance technique for solids , 1988 .

[20]  J. Facelli,et al.  Carbon-13 shielding tensors: experimental and theoretical determination , 1987 .

[21]  G. Maciel High-Resolution Nuclear Magnetic Resonance of Solids , 1984, Science.

[22]  D. Grant,et al.  Cross polarization and magic angle sample spinning NMR spectra of model organic compounds. 3. Effect of the carbon-13-proton dipolar interaction on cross polarization and carbon-proton dephasing , 1983 .