Limiting effects on laser compression by resonant backward Raman scattering in modern experiments

Through resonant backward Raman scattering, the plasma wave mediates the energy transfer between long pump and short seed laser pulses. These mediations can result in pulse compression at extraordinarily high powers. However, both the overall efficiency of the energy transfer and the duration of the amplified pulse depend upon the persistence of the plasma wave excitation. At least with respect to the recent state-of-the-art experiments, it is possible to deduce that at present the experimentally realized efficiency of the amplifier is likely constrained mainly by two effects, namely, the pump chirp and the plasma wave wavebreaking.

[1]  T. Coffey,et al.  Breaking of Large Amplitude Plasma Oscillations , 1971 .

[2]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[3]  N. Fisch,et al.  Backward Raman amplification in a partially ionized gas. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Suppression of Landau damping via electron band gap , 2009, 0910.2196.

[5]  S. Suckewer,et al.  Reaching nonlinear regime in Raman amplification of ultrashort laser pulses , 2005, 2005 Quantum Electronics and Laser Science Conference.

[6]  N. Fisch,et al.  Backward Raman amplification of ionizing laser pulses , 2001 .

[7]  Szymon Suckewer,et al.  Amplification of ultrashort laser pulses by a resonant Raman scheme in a gas-jet plasma. , 2004, Physical review letters.

[8]  Alexander Pukhov,et al.  Superradiant Amplification of an Ultrashort Laser Pulse in a Plasma by a Counterpropagating Pump , 1998 .

[9]  Dino A. Jaroszynski,et al.  Raman amplification in plasma: Wavebreaking and heating effects , 2010 .

[10]  N. Fisch,et al.  Regime for a Self-ionizing Raman Laser Amplifier , 2001 .

[11]  N. Fisch,et al.  Manipulating ultraintense laser pulses in plasmas , 2005 .

[12]  Szymon Suckewer,et al.  A compact double-pass Raman backscattering amplifier/compressora) , 2007 .

[13]  Ming-Wei Lin,et al.  Backward Raman amplification in a plasma waveguide , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[14]  H. Suk,et al.  Effects of the frequency detuning in Raman backscattering of infinitely long laser pulses in plasmas , 2006 .

[15]  Effect of nonlinear Landau damping in plasma-based backward Raman amplifier , 2009 .

[16]  B Ersfeld,et al.  Superradiant linear Raman amplification in plasma using a chirped pump pulse. , 2005, Physical review letters.

[17]  Stimulated raman scattering of rapidly amplified short laser pulses. , 2000, Physical review letters.

[18]  D. Strozzi,et al.  Nonlinear Landau damping rate of a driven plasma wave. , 2009, Physical review letters.

[19]  Juan C Fernández,et al.  Observed insensitivity of stimulated Raman scattering on electron density , 2000 .

[20]  A. Balakin,et al.  Laser pulse amplification upon Raman backscattering in plasma produced in dielectric capillaries , 2004 .

[21]  R. Dewar Saturation of kinetic plasma instabilities by particle trapping , 1973 .

[22]  N. Fisch,et al.  Simplified Model of Nonlinear Landau Damping , 2009 .

[23]  N. Fisch,et al.  Simulations of Raman laser amplification in ionizing plasmas , 2003 .

[24]  Reduced kinetic descriptions of weakly driven plasma waves , 2007 .

[25]  N. Fisch,et al.  Raman amplification of ultrashort laser pulses in microcapillary plasmas. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  N. Fisch,et al.  Quasitransient regimes of backward Raman amplification of intense x-ray pulses. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Gennady Shvets,et al.  Ultra-powerful compact amplifiers for short laser pulses , 2000 .

[28]  N. Fisch,et al.  Robustness of laser phase fronts in backward Raman amplifiers , 2002 .

[29]  Peter A. Norreys,et al.  Simulations of efficient Raman amplification into the multipetawatt regime , 2010 .

[30]  D. Dubois,et al.  Inflation threshold: A nonlinear trapping-induced threshold for the rapid onset of stimulated Raman scattering from a single laser speckle , 2007 .

[31]  G. Fraiman,et al.  Amplification of short laser pulses by Raman backscattering in capillary plasmas , 2002 .

[32]  N. Fisch,et al.  Intense laser pulse amplification using Raman backscatter in plasma channels , 2002 .

[33]  T. M. O'Neil,et al.  The Collisionless Damping of Nonlinear Plasma Oscillations. , 1965 .

[34]  K. Bowers,et al.  Observation of amplification of light by Langmuir waves and its saturation on the electron kinetic timescale , 2010 .

[35]  Richard L. Berger,et al.  Inverse bremsstrahlung stabilization of noise in the generation of ultrashort intense pulses by backward Raman amplification , 2004 .

[36]  N. Fisch,et al.  Suppression of superluminous precursors in high-power backward Raman amplifiers. , 2001, Physical review letters.

[37]  L. Gremillet,et al.  Nonlinear plasma response to a slowly varying electrostatic wave, and application to stimulated Raman scattering , 2007 .

[38]  Vladimir M. Malkin,et al.  Generation of ultrahigh intensity laser pulses , 2003 .

[39]  Scott C. Wilks,et al.  Development of a nanosecond-laser-pumped Raman amplifier for short laser pulses in plasma , 2009 .

[40]  N. Fisch,et al.  Amplification of an ultrashort pulse laser by stimulated Raman scattering of a 1ns pulse in a low density plasma , 2007 .

[41]  Ping,et al.  Demonstration of ultrashort laser pulse amplification in plasmas by a counterpropagating pumping beam , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  N. Fisch,et al.  Detuned raman amplification of short laser pulses in plasma , 2000, Physical review letters.

[43]  D. Strozzi,et al.  Nonlinear kinetic description of Raman growth using an envelope code, and comparisons with Vlasov simulations , 2010 .

[44]  J. Wurtele,et al.  Slowly varying envelope kinetic simulations of pulse amplification by Raman backscattering , 2004 .

[45]  N. Fisch,et al.  Operating Regime for a Backward Raman Laser Amplifier in Preformed Plasma , 2003 .

[46]  J. Moody,et al.  OBSERVATION OF THE NONLINEAR SATURATION OF LANGMUIR WAVES DRIVEN BY PONDEROMOTIVE FORCE IN A LARGE SCALE PLASMA , 1999 .

[47]  N. Fisch,et al.  Relic crystal-lattice effects on Raman compression of powerful x-ray pulses in plasmas. , 2007, Physical review letters.

[48]  M. Dreher,et al.  Observation of superradiant amplification of ultrashort laser pulses in a plasma. , 2004, Physical review letters.

[49]  W. Kruer,et al.  The Physics of Laser Plasma Interactions , 2019 .

[50]  N. Fisch,et al.  Finite-duration seeding effects in powerful backward Raman amplifiers. , 2004 .

[51]  Gennady Shvets,et al.  FAST COMPRESSION OF LASER BEAMS TO HIGHLY OVERCRITICAL POWERS , 1999 .

[52]  R. Kirkwood,et al.  Particle-in-cell simulations of kinetic effects in plasma-based backward Raman amplification in underdense plasmas , 2010 .

[53]  N. Fisch,et al.  Noise Suppression and Enhanced Focusability in Plasma Raman Amplifier with Multi-frequency Pump , 2003 .

[54]  Particle-in-cell simulations of Raman laser amplification in preformed plasmas , 2003 .

[55]  S. Moon,et al.  Backward Raman compression of x-rays in metals and warm dense matters , 2010, 1002.1735.

[56]  N. Fisch,et al.  Quasitransient backward Raman amplification of powerful laser pulses in dense plasmas with multicharged ions , 2010 .

[57]  N. Fisch,et al.  Compression of powerful x-ray pulses to attosecond durations by stimulated Raman backscattering in plasmas. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  N. Fisch,et al.  Random density inhomogeneities and focusability of the output pulses for plasma-based powerful backward Raman amplifiers , 2003 .

[59]  Pump side scattering in ultrapowerful backward Raman amplifiers. , 2004 .

[60]  Szymon Suckewer,et al.  Demonstration of detuning and wavebreaking effects on Raman amplification efficiency in plasma , 2008 .

[61]  Jonathan S. Wurtele,et al.  Feasibility study for using an extended three-wave model to simulate plasma-based backward Raman amplification in one spatial dimension , 2009 .