neuRosim: An R Package for Generating fMRI Data

Studies that validate statistical methods for functional magnetic resonance imaging (fMRI) data often use simulated data to ensure that the ground truth is known. However, simulated fMRI data are almost always generated using in-house procedures because a well-accepted simulation method is lacking. In this article we describe the R package neuRosim, which is a collection of data generation functions for neuroimaging data. We will demonstrate the possibilities to generate data from simple time series to complete 4D images and the possibilities for the user to create her own data generation method.

[1]  Lars Kai Hansen,et al.  Consensus Inference in Neuroimaging , 2001, NeuroImage.

[2]  Jonas Svensson,et al.  Investigation of spatial resolution, partial volume effects and smoothing in functional MRI using artificial 3D time series , 2008, NeuroImage.

[3]  B. Biswal,et al.  High‐resolution fMRI using multislice partial k‐space GR‐EPI with cubic voxels , 2001, Magnetic resonance in medicine.

[4]  T. Shallice,et al.  Face repetition effects in implicit and explicit memory tests as measured by fMRI. , 2002, Cerebral cortex.

[5]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[6]  Nelson J. Trujillo-Barreto,et al.  Identification and comparison of stochastic metabolic/hemodynamic models (sMHM) for the generation of the BOLD signal , 2009, Journal of Computational Neuroscience.

[7]  Jing Hu,et al.  Discriminating Brain Activity from Task-related Artifacts in Functional Mri: Fractal Scaling Analysis Simulation and Application , 2007 .

[8]  Dezhong Yao,et al.  A parallel framework for simultaneous EEG/fMRI analysis: Methodology and simulation , 2010, NeuroImage.

[9]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[10]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[11]  Qin Yang,et al.  Analysis of fMRI Data Using Improved Self-Organizing Mapping and Spatio-Temporal Metric Hierarchical Clustering , 2008, IEEE Transactions on Medical Imaging.

[12]  Martin A. Lindquist,et al.  Detection of time-varying signals in event-related fMRI designs , 2008, NeuroImage.

[13]  R. Buxton,et al.  Modeling the hemodynamic response to brain activation , 2004, NeuroImage.

[14]  C. Segebarth,et al.  Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation , 2008, PLoS biology.

[15]  J. Duyn,et al.  Investigation of Low Frequency Drift in fMRI Signal , 1999, NeuroImage.

[16]  Alan C. Evans,et al.  Bootstrap generation and evaluation of an fMRI simulation database. , 2009, Magnetic resonance imaging.

[17]  V. Calhoun,et al.  Semiblind spatial ICA of fMRI using spatial constraints , 2009, Human brain mapping.

[18]  Trevor S. Smart,et al.  The Statistical Analysis of Functional MRI Data , 2010 .

[19]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[20]  L. K. Hansen,et al.  Plurality and Resemblance in fMRI Data Analysis , 1999, NeuroImage.

[21]  R. Weisskoff,et al.  Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel‐level false‐positive rates in fMRI , 1998, Human brain mapping.

[22]  P A Robinson,et al.  Spatiotemporal BOLD dynamics from a poroelastic hemodynamic model. , 2010, Journal of theoretical biology.

[23]  Yu-Chung N. Cheng,et al.  Magnetic Resonance Imaging: Physical Principles and Sequence Design , 1999 .

[24]  P. J. Jennings,et al.  Time series analysis in the time domain and resampling methods for studies of functional magnetic resonance brain imaging , 1997, Human brain mapping.

[25]  Sophie Achard The Statistical Analysis of Functional MRI Data , 2008 .

[26]  E. Bullmore,et al.  Statistical methods of estimation and inference for functional MR image analysis , 1996, Magnetic resonance in medicine.

[27]  David Gavaghan,et al.  Development of a functional magnetic resonance imaging simulator for modeling realistic rigid‐body motion artifacts , 2006, Magnetic resonance in medicine.

[28]  Karline Soetaert,et al.  Solving Differential Equations in R: Package deSolve , 2010 .

[29]  Daniel B. Rowe,et al.  An evaluation of thresholding techniques in fMRI analysis , 2004, NeuroImage.

[30]  E. DeYoe,et al.  Reduction of physiological fluctuations in fMRI using digital filters , 1996, Magnetic resonance in medicine.

[31]  Daniel B. Rowe,et al.  A complex way to compute fMRI activation , 2004, NeuroImage.

[32]  W. W. Hansen,et al.  Nuclear Induction , 2011 .

[33]  John C. Gore,et al.  ROC Analysis of Statistical Methods Used in Functional MRI: Individual Subjects , 1999, NeuroImage.

[34]  Volker Schmid,et al.  Working with the DICOM and NIfTI Data Standards in R , 2011 .

[35]  G. Glover,et al.  Physiological noise in oxygenation‐sensitive magnetic resonance imaging , 2001, Magnetic resonance in medicine.

[36]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[37]  Nelson J. Trujillo-Barreto,et al.  Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism , 2008, NeuroImage.

[38]  M. Bianciardi,et al.  Evaluation of mixed effects in event-related fMRI studies: impact of first-level design and filtering , 2004, NeuroImage.

[39]  N Lange,et al.  Statistical thinking in functional and structural magnetic resonance neuroimaging. , 1999, Statistics in medicine.