Quantum computation of scattering in scalar quantum field theories

Quantum field theory provides the framework for the most fundamental physical theories to be confirmed experimentally and has enabled predictions of unprecedented precision. However, calculations of physical observables often require great computational complexity and can generally be performed only when the interaction strength is weak. A full understanding of the foundations and rich consequences of quantum field theory remains an outstanding challenge. We develop a quantum algorithm to compute relativistic scattering amplitudes in massive ϕ4 theory in spacetime of four and fewer dimensions. The algorithm runs in a time that is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. Thus, it offers exponential speedup over existing classical methods at high precision or strong coupling.

[1]  Catherine Schwob,et al.  Determination of the fine structure constant with atomic interferometry and Bloch oscillations. , 2008 .

[2]  James Glimm,et al.  phi$sub 2$$sup 4$ quantum field model in the single-phase region: Differentiability of the mass and bounds on critical exponents , 1974 .

[3]  Jiannis K. Pachos,et al.  Yang-Mills gauge theories from simple fermionic lattice models , 2008, 0807.0826.

[4]  J Casanova,et al.  Quantum simulation of interacting fermion lattice models in trapped ions. , 2011, Physical review letters.

[5]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[6]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  Julia Kempe,et al.  3-local Hamiltonian is QMA-complete , 2003, Quantum Inf. Comput..

[8]  B. Baillaud Sur le calcul numerique des integrales definies , 1886 .

[9]  J Casanova,et al.  Quantum simulation of quantum field theories in trapped ions. , 2011, Physical review letters.

[10]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[11]  K. Wilson The renormalization group and critical phenomena , 1983 .

[12]  William A. Webb,et al.  Wavefunction preparation and resampling using a quantum computer , 2008, 0801.0342.

[13]  Virginia Vassilevska Williams,et al.  Multiplying matrices faster than coppersmith-winograd , 2012, STOC '12.

[14]  James Glimm,et al.  The λ(φ4)2 quantum field theory without cutoffsquantum field theory without cutoffs , 1970 .

[15]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[16]  R. Sénéor,et al.  Phase space cell expansion and borel summability for the Euclidean φ34 theory , 1977 .

[17]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[18]  Benni Reznik,et al.  Confinement and lattice quantum-electrodynamic electric flux tubes simulated with ultracold atoms. , 2011, Physical review letters.

[19]  Stephen P. Jordan,et al.  Quantum computation beyond the circuit model , 2008, 0809.2307.

[20]  M. Ruskai,et al.  Bounds for the adiabatic approximation with applications to quantum computation , 2006, quant-ph/0603175.

[21]  M. Suzuki,et al.  Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .

[22]  J.-P. Eckmann,et al.  Asymptotic perturbation expansion for the S-matrix and the definition of time ordered functions in relativistic quantum field models , 1976 .

[23]  Eliot Kapit,et al.  Optical-lattice Hamiltonians for relativistic quantum electrodynamics , 2010, 1011.4021.

[24]  C. Arzt Reduced effective lagrangians , 1993, hep-ph/9304230.

[25]  Gerard J. Milburn,et al.  Simulating quantum effects of cosmological expansion using a static ion trap , 2010, 1005.0434.

[26]  M. Aizenman,et al.  Geometric analysis of ϕ 4 fields and Ising models , 1982 .

[27]  Andrew M. Childs,et al.  Universal computation by quantum walk. , 2008, Physical review letters.

[28]  K. Symanzik,et al.  Continuum Limit and Improved Action in Lattice Theories. 1. Principles and phi**4 Theory , 1983 .

[29]  M. Lewenstein,et al.  Dirac equation for cold atoms in artificial curved spacetimes , 2010, 1010.1716.

[30]  Carsten Honerkamp,et al.  Color superfluidity and "baryon" formation in ultracold fermions. , 2007, Physical review letters.

[31]  P. Nation,et al.  Analogue Hawking radiation in a dc-SQUID array transmission line. , 2009, Physical review letters.

[32]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[33]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[34]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[35]  R. Feynman Simulating physics with computers , 1999 .

[36]  Florin Constantinescu Nontriviality of the scattering matrix for weakly coupled Φ34 models , 1977 .

[37]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[38]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[39]  Christof Zalka Simulating quantum systems on a quantum computer , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[40]  Julia Kempe,et al.  The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.

[41]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[42]  Jean Zinn-Justin,et al.  Critical Exponents for the N Vector Model in Three-Dimensions from Field Theory , 1977 .

[43]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[44]  L. B. Ioffe,et al.  Discrete non-Abelian gauge theories in two-dimensional lattices and their realizations in Josephson-junction arrays , 2003, cond-mat/0302104.

[45]  P. Høyer,et al.  Higher order decompositions of ordered operator exponentials , 2008, 0812.0562.

[46]  A. Messiah Quantum Mechanics , 1961 .

[47]  Dorit Aharonov,et al.  Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .

[48]  R. Schutzhold,et al.  Quantum simulation of cosmic inflation in two-component Bose-Einstein condensates , 2004, cond-mat/0406470.

[49]  A. Sokal,et al.  A new proof of the existence and nontriviality of the continuum ϕ24 and ϕ34 quantum field theories , 1983 .

[50]  P. Zoller,et al.  A Rydberg quantum simulator , 2009, 0907.1657.

[51]  Konrad Osterwalder,et al.  The Scattering Matrix Is Nontrivial for Weakly Coupled p (phi) in Two-Dimensions Models , 1975 .

[52]  J. Glimm,et al.  The λφ24 Quantum Field Theory without Cutoffs. IV. Perturbations of the Hamiltonian , 1972 .

[53]  Lev B. Ioffe,et al.  Discrete non-Abelian gauge theories in Josephson-junction arrays and quantum computation , 2004 .

[54]  James Glimm,et al.  The λ(ϕ 4 ) 2 Quantum Field Theory Without Cutoffs: II. The Field Operators and the Approximate Vacuum , 1970 .

[55]  H. Stoof,et al.  Theory of ultracold superstrings , 2006, cond-mat/0604671.

[56]  J. Cirac,et al.  Cold atom simulation of interacting relativistic quantum field theories. , 2010, Physical review letters.

[57]  Carl Pomerance,et al.  The Development of the Number Field Sieve , 1994 .

[58]  Michael Aizenman,et al.  Geometric analysis of φ4 fields and Ising models. Parts I and II , 1982 .

[59]  James Glimm,et al.  The λ(ϕ 4)2 Quantum Field Theory without Cutoffs , 1985 .

[60]  James Glimm,et al.  Positivity of the φ 34 Hamiltonian , 1973 .

[61]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[62]  Michael Larsen,et al.  A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.

[63]  M. Johanning,et al.  Quantum simulations with cold trapped ions , 2009, 0905.0118.

[64]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[65]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[66]  John Preskill,et al.  Quantum Algorithms for Quantum Field Theories , 2011, Science.

[67]  P Zoller,et al.  Atomic quantum simulator for lattice gauge theories and ring exchange models. , 2005, Physical review letters.

[68]  Maciej Lewenstein,et al.  An optical-lattice-based quantum simulator for relativistic field theories and topological insulators , 2011, 1105.0932.

[69]  M. Freedman,et al.  Simulation of Topological Field Theories¶by Quantum Computers , 2000, quant-ph/0001071.

[70]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[71]  Carl M. Bender,et al.  Perturbation theory in large order , 1978 .

[72]  P. Weisz,et al.  Scaling laws and triviality bounds in the lattice φ4 theory: (I). One-component model in the symmetric phase , 1987 .

[73]  K. Osterwalder,et al.  The Wightman axioms and the Mass gap for weakly coupled (phi/sup 4/)/sub 3/ quantum field theories , 1975 .

[74]  James Glimm,et al.  The Wightman Axioms and Particle Structure in the (φ) 2 Quantum Field Model , 1974 .

[75]  James Glimm,et al.  A LAMBDA PHI**4 QUANTUM FIELD THEORY WITHOUT CUTOFFS. 1 , 1968 .

[76]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[77]  Jean Zinn-Justin,et al.  Perturbation theory at large order. I. The phi/sup 2//sup N/ interaction , 1977 .

[78]  M. Lewenstein,et al.  Wilson fermions and axion electrodynamics in optical lattices. , 2010, Physical review letters.

[79]  E. Knill Approximation by Quantum Circuits , 1995 .

[80]  Lov K. Grover,et al.  Creating superpositions that correspond to efficiently integrable probability distributions , 2002, quant-ph/0208112.

[81]  G. Gabrielse,et al.  New measurement of the electron magnetic moment and the fine structure constant. , 2006, Physical review letters.

[82]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[83]  A. Trombettoni,et al.  (3+1) massive Dirac fermions with ultracold atoms in frustrated cubic optical lattices , 2010, 1004.4744.

[84]  Tim Byrnes,et al.  Simulating lattice gauge theories on a quantum computer (熱場の量子論とその応用) , 2006 .

[85]  M. Suzuki,et al.  General Decomposition Theory of Ordered Exponentials , 1993 .

[86]  Oliver A. McBryan,et al.  Existence of the critical point in φ4 field theory , 1976 .

[87]  Jean-Pierre Eckmann,et al.  Borel summability of the mass and theS-matrix in ϕ4 models , 1979 .

[88]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[89]  R. Sénéor,et al.  Decay properties and borel summability for the Schwinger functions inP(Φ)2 theories , 1975 .

[90]  François Nez,et al.  Determination of the fine structure constant based on BLOCH oscillations of ultracold atoms in a vertical optical lattice. , 2006, Physical review letters.

[91]  Vladislav Gerginov,et al.  Optical frequency measurements of 6s 2S1/2-6P 2P1/2 (D1) transitions in 133Cs and their impact on the fine-structure constant , 2006 .

[92]  Howard Georgi,et al.  On-shell effective field theory☆☆☆ , 1991 .

[93]  K. Symanzik,et al.  Continuum Limit and Improved Action in Lattice Theories. 2. O(N) Nonlinear Sigma Model in Perturbation Theory , 1983 .

[94]  J. Hopcroft,et al.  Triangular Factorization and Inversion by Fast Matrix Multiplication , 1974 .

[95]  Kenji Maeda,et al.  Simulating dense QCD matter with ultracold atomic boson-fermion mixtures. , 2009, Physical review letters.

[96]  L. Lipatov,et al.  Divergence of the Perturbation Theory Series and the Quasiclassical Theory , 1976 .

[97]  Julia Kempe,et al.  3-local Hamitonian is QMA-complete , 2003 .

[98]  Jean Zinn-Justin,et al.  Perturbation theory at large order. I. The Φ2N interaction , 1990 .

[99]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[100]  V. Gerginov,et al.  Optical frequency measurements of 6 s 2 S 1 / 2 − 6 p 2 P 1 / 2 „ D 1 ... transitions in 133 Cs and their impact on the fine-structure constant , 2006 .

[101]  Masudul Haque,et al.  Ultracold superstrings in atomic boson-fermion mixtures. , 2005, Physical review letters.

[102]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[103]  Maciej Lewenstein,et al.  Gauge fields emerging from time-reversal symmetry breaking for spin-5/2 fermions in a honeycomb lattice , 2011 .

[104]  S. Wiesner Simulations of Many-Body Quantum Systems by a Quantum Computer , 1996, quant-ph/9603028.

[105]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[106]  J. Fröhlich On the triviality of λϕd4 theories and the approach to the critical point in d(−) > 4 dimensions , 1982 .

[107]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[108]  Barry Simon,et al.  Correlation inequalities and the mass gap inP (φ)2 , 1973 .

[109]  Christof Zalka,et al.  Efficient Simulation of Quantum Systems by Quantum Computers , 1998 .

[110]  Andris Ambainis,et al.  Quantum walks on graphs , 2000, STOC '01.