Single-Cell Expression Analyses during Cellular Reprogramming Reveal an Early Stochastic and a Late Hierarchic Phase

[1]  Muneef Ayyash,et al.  The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming , 2012, Nature.

[2]  A. Oudenaarden,et al.  Single-molecule transcript counting of stem-cell markers in the mouse intestine , 2011, Nature Cell Biology.

[3]  Pradeep S Rajendran,et al.  Single-cell dissection of transcriptional heterogeneity in human colon tumors , 2011, Nature Biotechnology.

[4]  H. Ng,et al.  The transcriptional and signalling networks of pluripotency , 2011, Nature Cell Biology.

[5]  Bing Ren,et al.  Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. , 2011, Genes & development.

[6]  Jarrett Rosenberg,et al.  Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells. , 2011, The Journal of clinical investigation.

[7]  Zachary D. Smith,et al.  Reprogramming factor expression initiates widespread targeted chromatin remodeling. , 2011, Cell stem cell.

[8]  Krishanu Saha,et al.  Pluripotency and Cellular Reprogramming: Facts, Hypotheses, Unresolved Issues , 2010, Cell.

[9]  J. Wrana,et al.  Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. , 2010, Cell stem cell.

[10]  Jialiang Liang,et al.  A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. , 2010, Cell stem cell.

[11]  Catalin C. Barbacioru,et al.  Tracing the Derivation of Embryonic Stem Cells from the Inner Cell Mass by Single-Cell RNA-Seq Analysis , 2010, Cell stem cell.

[12]  Zachary D. Smith,et al.  Dynamic single-cell imaging of direct reprogramming reveals an early specifying event , 2010, Nature Biotechnology.

[13]  Mikael Huss,et al.  Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. , 2010, Developmental cell.

[14]  Helen M. Blau,et al.  Reprogramming towards pluripotency requires AID-dependent DNA demethylation , 2010, Nature.

[15]  Alexander van Oudenaarden,et al.  Variability in gene expression underlies incomplete penetrance , 2009, Nature.

[16]  Jeroen S. van Zon,et al.  Direct cell reprogramming is a stochastic process amenable to acceleration , 2009, Nature.

[17]  T. Ichisaka,et al.  Suppression of induced pluripotent stem cell generation by the p53–p21 pathway , 2009, Nature.

[18]  Ge Guo,et al.  Nanog Is the Gateway to the Pluripotent Ground State , 2009, Cell.

[19]  Qi Zhou,et al.  iPS cells produce viable mice through tetraploid complementation , 2009, Nature.

[20]  Shinya Yamanaka,et al.  Elite and stochastic models for induced pluripotent stem cell generation , 2009, Nature.

[21]  V. Corces,et al.  CTCF: Master Weaver of the Genome , 2009, Cell.

[22]  Irving L. Weissman,et al.  Association of reactive oxygen species levels and radioresistance in cancer stem cells , 2009, Nature.

[23]  Thomas Lufkin,et al.  Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb , 2009, Nature Cell Biology.

[24]  Scott A. Rifkin,et al.  Imaging individual mRNA molecules using multiple singly labeled probes , 2008, Nature Methods.

[25]  T. Mikkelsen,et al.  Dissecting direct reprogramming through integrative genomic analysis , 2008, Nature.

[26]  Marius Wernig,et al.  A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types , 2008, Nature Biotechnology.

[27]  G. Birkhoff,et al.  Mediators of reprogramming: transcription factors and transitions through mitosis , 2008, Nature Reviews Molecular Cell Biology.

[28]  K. Hochedlinger,et al.  Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. , 2008, Cell stem cell.

[29]  R. Young,et al.  Stem Cells, the Molecular Circuitry of Pluripotency and Nuclear Reprogramming , 2008, Cell.

[30]  C. Lengner,et al.  Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. , 2008, Cell stem cell.

[31]  Marius Wernig,et al.  Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells , 2007, Nature Biotechnology.

[32]  T. Ichisaka,et al.  Generation of germline-competent induced pluripotent stem cells , 2007, Nature.

[33]  R. Jaenisch,et al.  In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state , 2007, Nature.

[34]  J. Utikal,et al.  Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. , 2007, Cell stem cell.

[35]  Alexei A. Sharov,et al.  Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells , 2007, Nature Cell Biology.

[36]  W. Reik Stability and flexibility of epigenetic gene regulation in mammalian development , 2007, Nature.

[37]  M. Surani,et al.  Genetic and Epigenetic Regulators of Pluripotency , 2007, Cell.

[38]  T. Ichisaka,et al.  GENERATION OF GERMLINECOMPETENT INDUCED PLURIPOTENT STEM CELLS , 2007 .

[39]  Li Chai,et al.  Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1 , 2006, Nature Cell Biology.

[40]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[41]  D. Melton,et al.  "Stemness": Transcriptional Profiling of Embryonic and Adult Stem Cells , 2002, Science.

[42]  H. Schöler,et al.  Oct4 distribution and level in mouse clones: consequences for pluripotency. , 2002, Genes & development.

[43]  Jianhua Lin,et al.  Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.