Atomistic modeling of mechanical behavior

Abstract Atomistic modeling plays a critical role in advancing our understanding of microstructure evolution and mechanical properties. We present progresses in the theory and computation of ideal strength, dislocations activation processes and brittle fracture from the atomic perspective, in close connection with experiments and other levels of modeling. New discoveries are often made in the “virtual atoms labs”. There, one has perfect control of the simulation conditions, and the amount of detailed atomistic information is often breathtaking. Yet, this information can only be seen, utilized and appreciated in full in light of experiments and models for other length/time-scales.

[1]  James R. Rice,et al.  Dislocation Nucleation from a Crack Tip" an Analysis Based on the Peierls Concept , 1991 .

[2]  Simon R. Phillpot,et al.  Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation , 2001 .

[3]  L. Freund,et al.  Thin Film Materials: Stress, Defect Formation and Surface Evolution , 2004 .

[4]  Peter M. Derlet,et al.  Grain-boundary sliding in nanocrystalline fcc metals , 2001 .

[5]  Parker,et al.  Dynamical instabilities in alpha -quartz and alpha -berlinite: A mechanism for amorphization. , 1995, Physical review. B, Condensed matter.

[6]  V. Vítek,et al.  Core properties and motion of dislocations in NiAl , 1998 .

[7]  Robb Thomson,et al.  Lattice Trapping of Fracture Cracks , 1971 .

[8]  Arthur F. Voter,et al.  Structural stability and lattice defects in copper: Ab initio , tight-binding, and embedded-atom calculations , 2001 .

[9]  K. Jacobsen,et al.  A Maximum in the Strength of Nanocrystalline Copper , 2003, Science.

[10]  Peter Gumbsch,et al.  Atomistic Aspects of Brittle Fracture , 2000 .

[11]  Gumbsch,et al.  Directional anisotropy in the cleavage fracture of silicon , 2000, Physical review letters.

[12]  P. Gumbsch,et al.  Impulsive fracture of fused quartz and silicon crystals by nonlinear surface acoustic waves , 2003 .

[13]  P. Hirsch,et al.  THE BRITTLE-DUCTILE TRANSITION IN SILICON , 1991 .

[14]  A. Ngan A critique on some of the concepts regarding planar faults in crystals , 1995 .

[15]  D. K. Bowen,et al.  The effect of shear stress on the screw dislocation core structure in body-centred cubic lattices , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[16]  V. Celli,et al.  Theory of Dislocation Mobility in Semiconductors , 1963 .

[17]  A. Giannakopoulos,et al.  Discrete and continuous deformation during nanoindentation of thin films , 2000 .

[18]  G. Vineyard Frequency factors and isotope effects in solid state rate processes , 1957 .

[19]  A. Ngan On generalizing the Peierls-Nabarro model for screw dislocations with non-planar cores , 1995 .

[20]  Ting Zhu,et al.  Atomistic mechanisms governing elastic limit and incipient plasticity in crystals , 2002, Nature.

[21]  C. Humphreys,et al.  High-resolution electron microscopy observation of a1/2(112) superdislocation in TiAl , 1995 .

[22]  S. Suresh,et al.  Nano-indentation of copper thin films on silicon substrates , 1999 .

[23]  Noam Bernstein,et al.  Dynamic Fracture of Silicon: Concurrent Simulation of Quantum Electrons, Classical Atoms, and the Continuum Solid , 2000 .

[24]  E. Arzt Size effects in materials due to microstructural and dimensional constraints: a comparative review , 1998 .

[25]  A. Hartmaier,et al.  Controlling factors for the brittle-to-ductile transition in tungsten single crystals , 1998, Science.

[26]  A. Ngan,et al.  Viscoelastic effects during unloading in depth-sensing indentation , 2002 .

[27]  James R. Rice,et al.  Ductile versus brittle behaviour of crystals , 1974 .

[28]  A. Ngan A generalized Peierls-Nabarro model for nonplanar screw dislocation cores , 1997 .

[29]  D. Pettifor,et al.  Atomistic modelling of TiAl I. Bond-order potentials with environmental dependence , 2003 .

[30]  Michael Ortiz,et al.  Nanomechanics of Defects in Solids , 1998 .

[31]  Michael P Marder,et al.  Cracks and Atoms , 1999 .

[32]  Karsten Wedel Jacobsen,et al.  SIMULATIONS OF THE ATOMIC STRUCTURE, ENERGETICS, AND CROSS SLIP OF SCREW DISLOCATIONS IN COPPER , 1997 .

[33]  Parag A. Pathak,et al.  Massachusetts Institute of Technology , 1964, Nature.

[34]  D. Dimiduk,et al.  Atomistic simulations of the structure and stability of “PPV” locks in an L12 compound , 1996 .

[35]  A. Hartmaier,et al.  Scaling relations for crack-tip plasticity , 2002 .

[36]  Nasr M. Ghoniem,et al.  Accuracy and convergence of parametric dislocation dynamics , 2003 .

[37]  Arthur F. Voter,et al.  Accurate Interatomic Potentials for Ni, Al and Ni3Al , 1986 .

[38]  V. Bulatov,et al.  Kinetic Monte Carlo approach to modeling dislocation mobility , 2002 .

[39]  Ju Li,et al.  AtomEye: an efficient atomistic configuration viewer , 2003 .

[40]  D. Pettifor,et al.  Defect modelling: the need for angularly dependent potentials , 1995 .

[41]  F. Nabarro,et al.  Dislocations in solids , 1979 .

[42]  Hussein M. Zbib,et al.  3D dislocation dynamics: stress–strain behavior and hardening mechanisms in fcc and bcc metals , 2000 .

[43]  D. Rodney,et al.  Structure and Strength of Dislocation Junctions: An Atomic Level Analysis , 1999 .

[44]  A. Ngan,et al.  Atomistic simulation of kink-pairs of screw dislocations in body-centred cubic iron , 2000 .

[45]  D. Bacon,et al.  An atomic-level model for studying the dynamics of edge dislocations in metals , 2003 .

[46]  Wei Xu,et al.  Accurate atomistic simulations of the Peierls barrier and kink-pair formation energy for 〈111〉 screw dislocations in bcc Mo , 1997 .

[47]  A. Seeger Why anomalous slip in body-centred cubic metals? , 2001 .

[48]  M. Yoo Stability of superdislocations and shear faults in L12 ordered alloys , 1987 .

[49]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[50]  K. Nickel,et al.  Phase transformations of silicon caused by contact loading , 1997 .

[51]  V. Vítek,et al.  Plastic anisotropy in b.c.c. transition metals , 1998 .

[52]  Robin Selinger,et al.  Atomistic Theory and Simulation of Fracture , 2000 .

[53]  Gang Feng,et al.  Effects of Creep and Thermal Drift on Modulus Measurement Using Depth-sensing Indentation , 2002 .

[54]  P. C. Gehlen,et al.  Flexible boundary conditions and nonlinear geometric effects in atomic dislocation modeling , 1978 .

[55]  F. Serbena,et al.  The brittle-to-ductile transition in germanium , 1994 .

[56]  Noam Bernstein,et al.  Multiscale simulations of silicon nanoindentation , 2001 .

[57]  Peter Gumbsch,et al.  An ab initio study of the cleavage anisotropy in silicon , 2000 .

[58]  Peter Gumbsch,et al.  An atomistic study of brittle fracture: Toward explicit failure criteria from atomistic modeling , 1995 .

[59]  V. Vítek Atomic structure of dislocations in intermetallics with close packed structures: a comparative study , 1998 .

[60]  鈴木 平,et al.  Dislocation dynamics and plasticity , 1991 .

[61]  Gérard Michot,et al.  Dislocation loops at crack tips: nucleation and growth— an experimental study in silicon , 1993 .

[62]  V. Vítek,et al.  Intrinsic stacking faults in body-centred cubic crystals , 1968 .

[63]  Maik Wiemer,et al.  A new approach for handling and transferring of thin semiconductor materials , 2003 .

[64]  Li,et al.  Mechanical instabilities of homogeneous crystals. , 1995, Physical review. B, Condensed matter.

[65]  A. P. Horsfield A computationally efficient differentiable Tight-Binding energy functional , 1996 .

[66]  F. Ebrahimi,et al.  Brittle-to-ductile transition in NiAl single crystal , 1998 .

[67]  C. Wang,et al.  Tight-binding molecular dynamics with linear system-size scaling , 1994 .

[68]  M. Deighton Fracture of Brittle Solids , 1976 .

[69]  Cramer,et al.  Energy dissipation and path instabilities in dynamic fracture of silicon single crystals , 2000, Physical review letters.

[70]  G. S. Murty,et al.  The orientation and temperature dependence of plastic flow in potassium , 1981 .

[71]  M. Nastasi,et al.  Molecular dynamics simulation of brittle fracture in silicon. , 2002, Physical review letters.

[72]  E. Kaxiras,et al.  SEMIDISCRETE VARIATIONAL PEIERLS FRAMEWORK FOR DISLOCATION CORE PROPERTIES , 1997 .

[73]  Brad Lee Holian,et al.  Molecular dynamics investigation of dynamic crack stability , 1997 .

[74]  A. Ngan,et al.  A universal relation for the stress dependence of activation energy for slip in body-centered cubic crystals , 1999 .

[75]  Tejs Vegge,et al.  Atomistic simulations of cross-slip of jogged screw dislocations in copper , 2001 .

[76]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[77]  Yu Qiao,et al.  Cleavage crack-growth-resistance of grain boundaries in polycrystalline Fe–2%Si alloy: experiments and modeling , 2003 .

[78]  D. Pettifor,et al.  Atomistic simulation of titanium. I. A bond-order potential , 1998 .

[79]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[80]  S. Suresh,et al.  Model experiments for direct visualization of grain boundary deformation in nanocrystalline metals , 2003 .

[81]  D. Brunner,et al.  The use of stress‐relaxation measurements for investigations on the flow stress of α‐iron , 1987 .

[82]  Huajian Gao,et al.  On radiation-free transonic motion of cracks and dislocations , 1999 .

[83]  J. Langer,et al.  Dynamics of viscoplastic deformation in amorphous solids , 1997, cond-mat/9712114.

[84]  H. Fischmeister,et al.  Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model , 1991 .

[85]  R Madec,et al.  From dislocation junctions to forest hardening. , 2002, Physical review letters.

[86]  Murray S. Daw,et al.  High-resolution transmission electron microscopy studies of dislocation cores in metals and intermetallic compounds , 1994 .

[87]  C. Woodward,et al.  Ab-initio simulation of isolated screw dislocations in bcc Mo and Ta , 2001 .

[88]  Gao,et al.  Dislocations faster than the speed of sound , 1999, Science.

[89]  Sidney Yip,et al.  Preface to the Viewpoint Set on , 2001 .

[90]  Sidney Yip,et al.  Ideal Pure Shear Strength of Aluminum and Copper , 2002, Science.

[91]  Harry L. Swinney,et al.  Dynamic Fracture in Single Crystal Silicon , 1999 .

[92]  F. Abraham,et al.  On the transition from brittle to plastic failure in breaking a nanocrystal under tension (NUT) , 1997 .

[93]  S. Cunningham,et al.  Elastic moduli, strength, and fracture initiation at sharp notches in etched single crystal silicon microstructures , 1999 .

[94]  Hannes Jonsson,et al.  Reversible work transition state theory: application to dissociative adsorption of hydrogen , 1995 .

[95]  A. Ngan,et al.  Accurate measurement of tip-sample contact size during nanoindentation of viscoelastic materials , 2003 .

[96]  P. Gumbsch,et al.  A new interpretation of flow-stress measurements of high-purity NiAl below room temperature , 2002 .

[97]  C. Shen,et al.  Phase field model of dislocation networks , 2003 .

[98]  M. Duesbery On kinked screw dislocations in the b.c.c. lattice—I. The structure and peierls stress of isolated kinks , 1983 .

[99]  D Rodney,et al.  The Role of Collinear Interaction in Dislocation-Induced Hardening , 2003, Science.

[100]  V. Vítek,et al.  Atomistic study of non-Schmid effects in the plastic yielding of bcc metals , 2001 .

[101]  Michael P Marder,et al.  Origin of crack tip instabilities , 1994, chao-dyn/9410009.

[102]  Peter Gumbsch,et al.  A Dislocation Crash Test , 1998, Science.

[103]  Preston,et al.  Large-scale molecular dynamics simulations of dislocation intersection in copper , 1998, Science.

[104]  W. Püschl,et al.  Models for dislocation cross-slip in close-packed crystal structures: a critical review , 2002 .

[105]  K. Yokogawa,et al.  Atomistic simulations of effect of hydrogen on kink-pair energetics of screw dislocations in bcc iron , 2003 .

[106]  P. Gumbsch,et al.  Crack Propagation in Quasicrystals , 1998 .

[107]  C. Woodward,et al.  Flexible Ab initio boundary conditions: simulating isolated dislocations in bcc Mo and Ta. , 2002, Physical review letters.

[108]  A. Ngan,et al.  Dislocation kink-pair energetics and pencil glide in body-centered-cubic crystals. , 2001, Physical review letters.

[109]  Ladislas P. Kubin,et al.  Mesoscopic simulations of plastic deformation , 2001 .

[110]  P. Gumbsch,et al.  Atomistic study of the interaction between dislocations and structural point defects in NiAl , 1998 .

[111]  D. Clarke Chapter 2 Fracture of Silicon and Other Semiconductors , 1992 .

[112]  Huajian Gao,et al.  Continuum and atomistic studies of intersonic crack propagation , 2001 .

[113]  Alfonso H.W. Ngan,et al.  A new model for dislocation kink-pair activation at low temperatures based on the Peierls-Nabarro concept , 1999 .

[114]  G. Schoeck Dislocation emission from crack tips , 1991 .

[115]  A. George,et al.  DISLOCATION NUCLEATION AND MULTIPLICATION AT CRACK TIPS IN SILICON , 1999 .

[116]  J. E. Dorn,et al.  Dislocation dynamics , 1965 .

[117]  A. Ngan Relaxation of antiphase boundary tubes in Ni3Al , 1994 .

[118]  Ting Zhu,et al.  Quantifying the early stages of plasticity through nanoscale experiments and simulations , 2003 .

[119]  P. Gumbsch Modeling Strain Hardening the Hard Way , 2003, Science.

[120]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[121]  James S. Langer,et al.  From Simulation to Theory in the Physics of Deformation and Fracture , 2000 .

[122]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[123]  J. Frenkel Zur Theorie der Elastizitätsgrenze und der Festigkeit kristallinischer Körper , 1926 .

[124]  A. Hartmaier,et al.  The brittle-to-ductile transition and dislocation activity at crack tips , 1999 .

[125]  A. Ngan,et al.  Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal , 2002 .

[126]  A. Ngan,et al.  Atomistic simulation of energetics of motion of screw dislocations in bcc Fe at finite temperatures , 2002 .

[127]  K. Ho,et al.  An environment-dependent tight-binding potential for Si , 1999 .

[128]  J. Barbera,et al.  Contact mechanics , 1999 .

[129]  P. Gumbsch,et al.  Plasticity and an inverse brittle-to-ductile transition in strontium titanate. , 2001, Physical review letters.

[130]  V. Vitek,et al.  Environmentally dependent bond-order potentials: New developments and applications , 2003 .

[131]  H. Trebin Quasicrystals : structure and physical properties , 2003 .

[132]  Hannes Jónsson,et al.  Atomistic Determination of Cross-Slip Pathway and Energetics , 1997 .

[133]  M. Duesbery The influence of core structure on dislocation mobility , 1969 .

[134]  A. Parasnis,et al.  Dislocations in solids , 1989 .

[135]  J. C. Hamilton,et al.  Dislocation nucleation and defect structure during surface indentation , 1998 .

[136]  F. Kroupa,et al.  A generalization of the peierls‐nabarro model for non‐planar dislocation cores , 1975 .

[137]  P. Hirsch A model of the anomalous yield stress for (111) slip in L12 alloys , 1992 .

[138]  Simon R. Phillpot,et al.  Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation , 2002, Nature materials.

[139]  David P. Pope,et al.  A theory of the anomalous yield behavior in L12 ordered alloys , 1984 .

[140]  H. V. Swygenhoven,et al.  Atomic mechanism for dislocation emission from nanosized grain boundaries , 2002 .

[141]  Takayoshi Suzuki,et al.  Plastic flow stress of b.c.c. transition metals and the Peierls potential , 1995 .

[142]  G. Schoeck The instability of Paidar-Pope-Vitek locks in L12 compounds , 1994 .

[143]  Phillips,et al.  Mesoscopic analysis of structure and strength of dislocation junctions in fcc metals , 2000, Physical review letters.

[144]  V. Vítek Multilayer stacking faults and twins on {211} planes in B.C.C. metals , 1970 .

[145]  A. Ngan,et al.  Atomistic simulation of screw dislocation mobility ahead of a mode III crack tip in the BCC structure , 1999 .