Nonparametric estimation of the transformation in the transform-both-sides regression model

Abstract The transform-both-sides (TBS) regression model developed by Carroll and Ruppert is applicable when the relationship between the median response and the independent variables has been identified. Several different families of transformations, such as the Box-Cox power family, have been considered in the parametric approach to this model. In this article, we propose a nonparametric estimator of the transformation in the TBS model allowing general smooth monotonic transformations. Asymptotic properties of this estimator are discussed.

[1]  Raymond J. Carroll,et al.  Semiparametric quasilikelihood and variance function estimation in measurement error models , 1993 .

[2]  Raymond J. Carroll,et al.  Semiparametric Estimation in Logistic Measurement Error Models , 1989 .

[3]  David Ruppert,et al.  Power Transformations When Fitting Theoretical Models to Data , 1984 .

[4]  R. Tibshirani Estimating Transformations for Regression via Additivity and Variance Stabilization , 1988 .

[5]  J. Ramsay Monotone Regression Splines in Action , 1988 .

[6]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[7]  B. Silverman,et al.  Weak and Strong Uniform Consistency of the Kernel Estimate of a Density and its Derivatives , 1978 .

[8]  C. Rembold,et al.  Growth of the human heart relative to body surface area. , 1990, The American journal of cardiology.

[9]  Douglas Nychka,et al.  Nonparametric transformations for both sides of a regression model , 1995 .

[10]  James Stephen Marron,et al.  Transformations in Density Estimation , 1991 .

[11]  Winfried Stute,et al.  Conditional empirical processes , 1986 .

[12]  B. Silverman,et al.  Weak and strong uniform consistency of kernel regression estimates , 1982 .

[13]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[14]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[15]  James Stephen Marron,et al.  Random approximations to some measures of accuracy in nonparametric curve estimation , 1986 .

[16]  W. Härdle,et al.  Optimal Bandwidth Selection in Nonparametric Regression Function Estimation , 1985 .

[17]  S. Weisberg Plots, transformations, and regression , 1985 .

[18]  D. Ruppert,et al.  Transformation and Weighting in Regression , 1988 .

[19]  D. Ruppert,et al.  Estimation of regression parameters in a semiparametric transformation model , 1996 .

[20]  M. C. Jones,et al.  Spline Smoothing and Nonparametric Regression. , 1989 .