Local Structure and Bonding of Transition Metal Dopants in Bi2Se3 Topological Insulator Thin Films

Transition metal (TM) doped topological insulators have been the focus of many recent studies since they exhibit exotic quantum and magneto-electric effects, and offer the prospect of potential applications in spintronic devices. Here we report a systematic study of the local electronic and structural environment using X-ray absorption fine structure (XAFS) in TM (=Cr, Mn, and Fe) doped Bi2Se3 thin films grown by molecular beam epitaxy. Analysis of the TM K-edge XAFS reveals a divalent character for Cr, Mn, and Fe when substituting Bi in the films, despite the trivalent character of the Bi. All dopants occupy octahedral sites in the Bi2Se3 lattice, which agrees with substitutional incorporation onto the Bi sites. With the incorporation of TM dopants a local structural relaxation of the Bi2Se3 lattice is observed, which strengthens the covalent character of the TM–Se bond. The presence of additional phases and interstitial incorporation for the Mn and Fe dopants is also observed, even at low concentrations.

[1]  A. Kellock,et al.  X-ray magnetic spectroscopy of MBE-grown Mn-doped Bi2Se3 thin films , 2014 .

[2]  G. Gu,et al.  Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3 , 2014, Proceedings of the National Academy of Sciences.

[3]  A. I. Figueroa,et al.  Magnetic Cr doping of Bi 2 Se 3 : Evidence for divalent Cr from x-ray spectroscopy , 2014 .

[4]  Zhen Liu,et al.  Local structures around 3d metal dopants in topological insulator Bi2Se3 studied by EXAFS measurements , 2014 .

[5]  A. Kellock,et al.  Magnetic ordering in Cr-doped Bi2Se3 thin films , 2014 .

[6]  Xiaolong Zou,et al.  Ferromagnetism and topological surface states of manganese doped Bi2Te3: insights from density-functional calculations. , 2014, The Journal of chemical physics.

[7]  Kang L. Wang,et al.  Stability, electronic, and magnetic properties of the magnetically doped topological insulators Bi 2 Se 3 , Bi 2 Te 3 , and Sb 2 Te 3 , 2013, 1311.5331.

[8]  T. Hesjedal,et al.  Study of the structural, electric and magnetic properties of Mn-doped Bi2Te3 single crystals , 2013 .

[9]  A. Fazzio,et al.  Topological insulator Bi 2 Se 3 (111) surface doped with transition metals: An ab initio investigation , 2013 .

[10]  E. Borfecchia,et al.  Insights into Adsorption of NH3 on HKUST-1 Metal–Organic Framework: A Multitechnique Approach , 2012 .

[11]  Nitin Samarth,et al.  Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator , 2012, Nature Physics.

[12]  D. Awschalom,et al.  Interplay between ferromagnetism, surface states, and quantum corrections in a magnetically doped topological insulator , 2012, 1206.2908.

[13]  Yugui Yao,et al.  Tailoring magnetic doping in the topological insulator Bi2Se3. , 2012, Physical review letters.

[14]  Hjm Henk Swagten,et al.  Ferromagnetism in thin-film Cr-doped topological insulator Bi2Se3 , 2012 .

[15]  C. You,et al.  Transport and magnetic properties of Cr-, Fe-, Cu-doped topological insulators , 2011 .

[16]  T. Mizokawa,et al.  A study of the electronic structure of FeSe1 − xTex chalcogenides by Fe and Se K-edge x-ray absorption near edge structure measurements , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  Wei Zhang,et al.  Quantized Anomalous Hall Effect in Magnetic Topological Insulators , 2010, Science.

[18]  J. Vegelius,et al.  Electron transfer during selenium reduction by iron surfaces in aqueous solution: High resolution X-ray absorption study , 2009 .

[19]  P. Larson,et al.  Electronic structure and magnetism in Bi 2 Te 3 , Bi 2 Se 3 , and Sb 2 Te 3 doped with transition metals (Ti–Zn) , 2008 .

[20]  Xiao-Liang Qi,et al.  Magnetic impurities on the surface of a topological insulator. , 2008, Physical review letters.

[21]  Xiao-Liang Qi,et al.  Topological field theory of time-reversal invariant insulators , 2008, 0802.3537.

[22]  A. Rushforth,et al.  Valence band orbital polarization in III-V ferromagnetic semiconductors , 2008, 0801.0673.

[23]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[24]  Liang Fu,et al.  Topological insulators in three dimensions. , 2006, Physical review letters.

[25]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[26]  C. Kane,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[27]  B. Ravel,et al.  ATOMS: crystallography for the X-ray absorption spectroscopist. , 2001, Journal of synchrotron radiation.

[28]  A. Kisiel,et al.  XANES study of K edges of Fe, Co, Ni, and Se in transition metal selenides. Experiment and comparison with LMTO numerical calculations , 1999 .

[29]  K. Hodgson,et al.  A Multiplet Analysis of Fe K-Edge 1s → 3d Pre-Edge Features of Iron Complexes , 1997 .

[30]  Fritsch,et al.  X-ray-absorption near-edge structure of 3d transition elements in tetrahedral coordination: The effect of bond-length variation. , 1985, Physical review. B, Condensed matter.

[31]  J. S. Stephens,et al.  The crystal structure of (CrO3) , 1970 .

[32]  R. Newnham,et al.  Refinement of theαAl2O3, Ti2O3, V2O3and Cr2O3structures* , 1962 .

[33]  G. Brun,et al.  Contribution to the study of the bismuth-selenium system , 1989 .