Stochastic Nonlinear Schrödinger Equations Driven by a Fractional Noise Well Posedness, Large Deviations and Support

We consider stochastic nonlinear Schrodinger equations driven by an additive noise. The noise is fractional in time with Hurst parameter $H \in (0,1)$ and colored in space with a nuclear space correlation operator. We study local well-posedness. Under adequate assumptions on the initial data, the space correlations of the noise and for some saturated nonlinearities, we prove sample path large deviations and support results in a space of Holder continuous in time until blow-up paths. We consider Kerr nonlinearities when $H > 1/2$.

[1]  A. Debussche,et al.  On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrödinger equation , 2002 .

[2]  Small noise asymptotic of the timing jitter in soliton transmission , 2006, math/0609434.

[3]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[4]  A. Millet,et al.  Large deviations for rough paths of the fractional Brownian motion , 2004, math/0412200.

[5]  Young Integrals and SPDEs , 2004, math/0407294.

[6]  Terry Lyons,et al.  LÉVY AREA OF WIENER PROCESSES IN BANACH SPACES , 2002 .

[7]  O. Mazet,et al.  Stochastic Calculus with Respect to Gaussian Processes , 2001 .

[8]  F. Viens,et al.  Stochastic evolution equations with fractional Brownian motion , 2003 .

[9]  L. Decreusefond Stochastic integration with respect to Volterra processes , 2003, math/0302047.

[10]  A. S. ÜstünelÉcole Stochastic Analysis of the Fractional Brownian Motion , 1996 .

[11]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[12]  A. Badrikian,et al.  Mesures cylindriques, espaces de Wiener et Fonctions aléatoires gaussiennes , 1974 .

[13]  A. Dembo,et al.  Large Deviation Techniques and Applications. , 1994 .

[14]  A. Debussche,et al.  The Stochastic Nonlinear Schrödinger Equation in H 1 , 2003 .

[15]  L. Young DIFFERENTIAL EQUATIONS DRIVEN BY ROUGH SIGNALS ( I ) : AN EXTENSION OF AN INEQUALITY OF , 2004 .

[16]  Eric Gautier Uniform large deviations for the nonlinear Schrödinger equation with multiplicative noise , 2005 .

[17]  Eric Gautier,et al.  Large deviations and support results for nonlinear Schrödinger equations with additive noise and applications , 2004, math/0406362.

[18]  L. Decreusefond,et al.  Stochastic Analysis of the Fractional Brownian Motion , 1999 .

[19]  M. Ledoux,et al.  LARGE DEVIATIONS AND SUPPORT THEOREM FOR DIFFUSIONS VIA ROUGH PATHS , 2002 .

[20]  Laure Coutin,et al.  Stochastic analysis, rough path analysis and fractional Brownian motions , 2002 .