Low-power CMOS digital design

Motivated by emerging battery-operated applications that demand intensive computation in portable environments, techniques are investigated which reduce power consumption in CMOS digital circuits while maintaining computational throughput. Techniques for low-power operation are shown which use the lowest possible supply voltage coupled with architectural, logic style, circuit, and technology optimizations. An architecturally based scaling strategy is presented which indicates that the optimum voltage is much lower than that determined by other scaling considerations. This optimum is achieved by trading increased silicon area for reduced power consumption. >

[1]  M. Kinugawa,et al.  Power-supply voltage impact on circuit performance for half and lower submicrometer CMOS LSI , 1990 .

[2]  Kazuo Yano,et al.  A 3.8 ns CMOS 16×16 multiplier using complementary pass transistor logic , 1989, 1989 Proceedings of the IEEE Custom Integrated Circuits Conference.

[3]  R. Watts,et al.  Submicron integrated circuits , 1989 .

[4]  Y. Taur,et al.  A high-performance 0.25- mu m CMOS technology. II. Technology , 1992 .

[5]  H. B. Bakoglu,et al.  Circuits, interconnections, and packaging for VLSI , 1990 .

[6]  T.E. Bell Incredible shrinking computers , 1991, IEEE Spectrum.

[7]  Shinji Okazaki,et al.  0.1 mu m CMOS devices using low-impurity-channel transistors (LICT) , 1990, International Technical Digest on Electron Devices.

[8]  Richard Goering,et al.  Silicon Compilers , 1987 .

[9]  Trevor York,et al.  Book Review: Principles of CMOS VLSI Design: A Systems Perspective , 1986 .

[10]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[11]  David G. Messerschmitt,et al.  Breaking the Recursive Bottleneck , 1988 .

[12]  David H. Green,et al.  Modern logic design , 1986 .

[13]  Kazuo Yano,et al.  A 3.8-ns CMOS 16*16-b multiplier using complementary pass-transistor logic , 1990 .

[14]  Miodrag Potkonjak,et al.  Optimizing resource utilization using transformations , 1991, 1991 IEEE International Conference on Computer-Aided Design Digest of Technical Papers.

[15]  Neil Weste,et al.  Principles of CMOS VLSI Design , 1985 .

[16]  Y. Taur,et al.  A high performance 0.25 mu m CMOS technology , 1988, Technical Digest., International Electron Devices Meeting.

[17]  Carlo H. Séquin,et al.  Design Considerations for Single-Chip Computers of the Future , 1980 .

[18]  Hendrikus J. M. Veendrick,et al.  Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits , 1984 .

[19]  M. Nagata Limitations, Innovations, And Challenges Of Circuits & Devices Into Half-Micron And Beyond , 1991, 1991 Symposium on VLSI Circuits.

[20]  David L. Pulfrey,et al.  A comparison of CMOS circuit techniques: differential cascode voltage switch logic versus conventional logic , 1987 .

[21]  R. M. Swanson,et al.  Ion-implanted complementary MOS transistors in low-voltage circuits , 1972 .

[22]  R. Brodersen,et al.  A fully-asynchronous digital signal processor using self-timed circuits , 1990, 1990 37th IEEE International Conference on Solid-State Circuits.

[23]  庄司 正一,et al.  CMOS digital circuit technology , 1988 .