Natural D‐glucose as a biodegradable MRI relaxation agent

Demonstrate applicability of natural D‐glucose as a T2 MRI contrast agent.

[1]  A. Sherry,et al.  Maximizing T2‐exchange in Dy3+DOTA‐(amide)X chelates: Fine‐tuning the water molecule exchange rate for enhanced T2 contrast in MRI , 2014, Magnetic resonance in medicine.

[2]  K. Behar,et al.  In vivo 1H‐[13C]‐NMR spectroscopy of cerebral metabolism , 2003, NMR in biomedicine.

[3]  P. V. van Zijl,et al.  NMR studies of brain 13C-glucose uptake and metabolism: present status. , 1995, Magnetic resonance imaging.

[4]  S. Aime,et al.  A New Class of Contrast Agents for Magnetic Resonance Imaging Based on Selective Reduction of Water‐T2 by Chemical Exchange , 1988, Investigative radiology.

[5]  Tzu-Chen Yen,et al.  In situ preparation of high relaxivity iron oxide nanoparticles by coating with chitosan: A potential MRI contrast agent useful for cell tracking , 2010 .

[6]  R G Shulman,et al.  13C NMR of intermediary metabolism: implications for systemic physiology. , 2001, Annual review of physiology.

[7]  Enzo Terreno,et al.  Iopamidol: Exploring the potential use of a well‐established x‐ray contrast agent for MRI , 2005, Magnetic resonance in medicine.

[8]  C T W Moonen,et al.  Determination of cerebral glucose transport and metabolic kinetics by dynamic MR spectroscopy. , 1997, American journal of physiology. Endocrinology and metabolism.

[9]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[10]  O. Togao,et al.  SWIFT‐CEST: A new MRI method to overcome T2 shortening caused by PARACEST contrast agents , 2012, Magnetic resonance in medicine.

[11]  A. Sherry,et al.  T2 exchange agents: A new class of paramagnetic MRI contrast agent that shortens water T2 by chemical exchange rather than relaxation , 2011, Magnetic resonance in medicine.

[12]  Yoshinori Kato,et al.  Natural D‐glucose as a biodegradable MRI contrast agent for detecting cancer , 2012, Magnetic resonance in medicine.

[13]  J. Jen Chemical exchange and nmr T2 relaxation—The multisite case , 1978 .

[14]  T. J. Swift,et al.  NMR‐Relaxation Mechanisms of O17 in Aqueous Solutions of Paramagnetic Cations and the Lifetime of Water Molecules in the First Coordination Sphere , 1962 .

[15]  F. Franks,et al.  Proton exchange in aqueous solutions of glucose. Hydration of carbohydrates , 1979 .

[16]  R. Gruetter In vivo 13 C NMR studies of compartmentalized cerebral carbohydrate metabolism , 2002, Neurochemistry International.

[17]  K. Uğurbil,et al.  Steady‐State Cerebral Glucose Concentrations and Transport in the Human Brain , 1998, Journal of neurochemistry.

[18]  Mark F. Lythgoe,et al.  In vivo imaging of glucose uptake and metabolism in tumors , 2012, Nature Medicine.

[19]  G. Hébrard,et al.  Experimental study of oxygen diffusion coefficients in clean water containing salt, glucose or surfactant: Consequences on the liquid-side mass transfer coefficients , 2010 .

[20]  K. Wüthrich,et al.  NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins , 1992, Journal of biomolecular NMR.

[21]  J. Jen Chemical exchange and NMR-T2 relaxation , 1974 .