The influence of computers in the development of number theory

Abstract The development of number theory has been greatly influenced by the use of large scale computing devices. This paper describes several different ways in which computers have aided in the growth of various branches of this subject. Some of the topics discussed are: factoring, primality testing, the syracuse problem, Abel's problem, diophantine equations, Fermat's Last Theorem, the Twin Prime Conjecture, the Riemann Hypothesis, and some problems from algebraic number theory. A lengthy (but by no means complete) bibliography is also included.

[1]  Harold M. Edwards,et al.  Riemann's Zeta Function , 1974 .

[2]  G. Kolata Mathematical proofs: the genesis of reasonable doubt. , 1976, Science.

[3]  Vaughan R. Pratt,et al.  Every Prime has a Succinct Certificate , 1975, SIAM J. Comput..

[4]  Samuel S. Wagstaff,et al.  The irregular primes to 125000 , 1978 .

[5]  R. Terras,et al.  A stopping time problem on the positive integers , 1976 .

[6]  H. C. Williams,et al.  A note on class-number one in pure cubic fields , 1979 .

[7]  M. Rabin Probabilistic algorithm for testing primality , 1980 .

[8]  Gary B. Gostin,et al.  Six new factors of Fermat numbers , 1982 .

[9]  J. L. Selfridge,et al.  Machine proof of a theorem on cubic residues , 1962 .

[10]  D. Shanks Solved and Unsolved Problems in Number Theory , 1964 .

[11]  H. C. Williams,et al.  The problem of Sierpiński concerning ⋅2ⁿ+1 , 1981 .

[12]  R. Brent The First Occurrence of Large Gaps Between Successive Primes , 1973 .

[13]  J. L. Selfridge,et al.  Some factorizations of 2ⁿ±1 and related results , 1967 .

[14]  D. D. Wall Fibonacci Series Modulo m , 1960 .

[15]  Charles M. Grinstead On a method of solving a class of Diophantine equations , 1978 .

[16]  Peter Hagis,et al.  A lower bound for the set of odd perfect numbers , 1973 .

[17]  H. C. Williams,et al.  Some Results Concerning Voronoi's Continued Fraction Over (√[3]D) , 1981 .

[18]  H. C. Williams,et al.  Calculation of the regulator of (√) by use of the nearest integer continued fraction algorithm , 1979 .

[19]  Harold M. Edwards,et al.  Fermat’s Last Theorem , 1977 .

[20]  Horst G. Zimmer,et al.  Computational problems, methods, and results in algebraic number theory , 1972 .

[21]  C. Pomerance Recent developments in primality testing , 1981 .

[22]  J. Brillhart,et al.  A method of factoring and the factorization of , 1975 .

[23]  S. Samuel,et al.  Large Carmichael numbers , 1980 .

[24]  Carl Pomerance,et al.  The pseudoprimes to 25⋅10⁹ , 1980 .

[25]  M. Wunderlich,et al.  On the non-existence of Fibonacci squares , 1963 .

[26]  J. Dixon Asymptotically fast factorization of integers , 1981 .

[27]  D. H. Lehmer On Fermat’s quotient, base two , 1981 .

[28]  Richard P. Brent,et al.  Irregularities in the distribution of primes and twin primes , 1975 .

[29]  J. Barkley Rosser,et al.  Sharper Bounds for the Chebyshev Functions θ(x) and ψ(x). II , 1975 .

[30]  te Herman Riele Four large amicable pairs , 1974 .

[31]  T. R. Parkin,et al.  A counterexample to Euler’s sum of powers conjecture , 1967 .

[32]  Michael Pohst,et al.  An effective number geometric method of computing the fundamental units of an algebraic number field , 1977 .

[33]  L. Adleman,et al.  On distinguishing prime numbers from composite numbers , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[34]  M. Wunderlich A running time analysis of Brillhart's continued fraction factoring method , 1979 .

[35]  Rosemarie M. Stemmler The ideal Waring theorem for exponents 401-200,000 , 1964 .

[36]  D. H. Lehmer,et al.  New primality criteria and factorizations of 2^{}±1 , 1975 .

[37]  Richard E. Crandall,et al.  On the $‘‘3x+1”$ problem , 1978 .

[38]  Hugh C. Williams,et al.  A modification of the RSA public-key encryption procedure (Corresp.) , 1980, IEEE Trans. Inf. Theory.

[39]  J. H. E. Cohn,et al.  On Square Fibonacci Numbers , 1964 .

[40]  Lowell Schoenfeld,et al.  Sharper bounds for the Chebyshev functions () and (). II , 1976 .

[41]  J. Wrench,et al.  Evaluation of Artin's Constant and the Twin-Prime Constant , 1961 .

[42]  J. C. P. MILLER Large Prime Numbers , 1951, Nature.

[43]  H. Davenport,et al.  THE EQUATIONS 3x2−2 = y2 AND 8x2−7 = z2 , 1969 .

[44]  H. C. Williams,et al.  Some very large primes of the form ⋅2^{}+1 , 1980 .

[45]  J. M. Pollard,et al.  Theorems on factorization and primality testing , 1974, Mathematical Proceedings of the Cambridge Philosophical Society.

[46]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[47]  J. Pollard A monte carlo method for factorization , 1975 .

[48]  Richard P. Brent,et al.  On the zeros of the Riemann zeta function in the critical strip , 1979 .

[49]  J. Barkley Rosser,et al.  Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$ , 1975 .