A modified fractional step method for fluid–structure interaction problems

We propose a Lagrangian fluid formulation particularly suitable for fluid–structure interaction (FSI) simulation involving free-surface flows and light-weight structures. The technique combines the features of fractional step and quasi-incompressible approaches. The fractional momentum equation is modified so as to include an approximation for the current-step pressure using the assumption of quasi-incompressibility. The volumetric term in the tangent matrix is approximated allowing for the element-wise pressure condensation in the prediction step. The modified fractional momentum equation can be readily coupled with a structural code in a partitioned or monolithic fashion. The use of the quasi-incompressible prediction ensures convergent fluid–structure solution even for challenging cases when the densities of the fluid and the structure are similar. Once the prediction was obtained, the pressure Poisson equation and momentum correction equation are solved leading to a truly incompressible solution in the fluid domain except for the boundary where essential pressure boundary condition is prescribed. The paper concludes with two benchmark cases, highlighting the advantages of the method and comparing it with similar approaches proposed formerly.

[1]  E. Oñate,et al.  A monolithic Lagrangian approach for fluid–structure interaction problems , 2010 .

[2]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[3]  Jan Vierendeels,et al.  Partitioned simulation of the interaction between an elastic structure and free surface flow , 2010 .

[4]  R. Codina A stabilized finite element method for generalized stationary incompressible flows , 2001 .

[5]  C. Antoci,et al.  Numerical simulation of fluid-structure interaction by SPH , 2007 .

[6]  Eugenio Oñate,et al.  Fluid–structure interaction problems with strong added‐mass effect , 2009 .

[7]  E. Oñate,et al.  The particle finite element method. An overview , 2004 .

[8]  G. Hou,et al.  Numerical Methods for Fluid-Structure Interaction — A Review , 2012 .

[9]  F. Brezzi,et al.  A discourse on the stability conditions for mixed finite element formulations , 1990 .

[10]  Alain Combescure,et al.  Modeling accidental-type fluid-structure interaction problems with the SPH method , 2009 .

[11]  Eugenio Oñate,et al.  Lagrangian fe methods for coupled problems in fluid mechanics , 2010 .

[12]  Eugenio Oñate,et al.  A Monolithic FE Formulation for the Analysis of Membranes in Fluids , 2009 .

[13]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .

[14]  C. Fletcher On an alternating direction implicit finite element method for flow problems , 1982 .

[15]  Sergio Idelsohn,et al.  A fast and accurate method to solve the incompressible Navier‐Stokes equations , 2013 .

[16]  Leigh McCue,et al.  Free-surface flow interactions with deformable structures using an SPH–FEM model , 2012 .

[17]  E. Oñate,et al.  Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM , 2008 .

[18]  Eugenio Oñate,et al.  Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid–structure interaction problems via the PFEM , 2008 .

[19]  Eugenio Oñate,et al.  Improving mass conservation in simulation of incompressible flows , 2012 .

[20]  V. Brummelen Added Mass Effects of Compressible and Incompressible Flows in Fluid-Structure Interaction , 2009 .

[21]  R. Codina Pressure Stability in Fractional Step Finite Element Methods for Incompressible Flows , 2001 .