On a girth-free variant of the Bourgain-Gamburd machine

Let p be a prime number and A ⊆ SL2(Fp) be a set of matrices. Suppose for simplicity that A = A−1, that is, A is a symmetric set. One can consider the Cayley graph Cay(SL2(Fp), A) (here Cay(SL2(Fp), A) = (SL2(Fp), E) and the set of edges E is defined as (x, y) ∈ E iff y = xa, a ∈ A) of the set A and study the properties of Cay(SL2(Fp), A). It is a fundamental problem to show that A is an expander [13], [10] under some conditions on A. Equivalently, we want to estimate nontrivially the operator norm of all representations of the Fourier transform of the characteristic function of A, i.e., Â(ρ), ρ 6= 1. In [1] (also, see [2]) Bourgain and Gamburd obtained

[1]  J. Bourgain,et al.  Uniform expansion bounds for Cayley graphs of SL2(Fp) , 2008 .

[2]  G. Tenenbaum,et al.  Small Gál sums and applications , 2019, Journal of the London Mathematical Society.

[3]  W. C. Carter,et al.  SELECTED WORKS , 2020, Music in World War II.

[4]  H. A. Helfgott Growth and generation in SL_2(Z/pZ) , 2005 .

[5]  I. Shkredov Modular hyperbolas and bilinear forms of Kloosterman sums , 2019, Journal of Number Theory.

[6]  H. Iwaniec,et al.  Analytic Number Theory , 2004 .

[7]  Alexander Lubotzky,et al.  Cayley graphs: eigenvalues, expanders and random walks , 1995 .

[8]  On incidence bounds with Möbius hyperbolae in positive characteristic , 2021, Finite Fields Their Appl..

[9]  P. Sarnak,et al.  Generalization of Selberg's 3/16 Theorem and Affine Sieve , 2009, 0912.5021.

[10]  Pólya Über die Verteilung der quadratischen Reste und Nichtreste , 1918 .

[11]  S. I.D.,et al.  On additive shifts of multiplicative subgroups , 2011, 1102.1172.

[12]  M. Z. Garaev,et al.  Concentration of Points on Two and Three Dimensional Modular Hyperbolas and Applications , 2010, 1007.1526.

[13]  J. Müller,et al.  Group Theory , 2019, Computers, Rigidity, and Moduli.

[14]  Charles F. Miller,et al.  Combinatorial Group Theory , 2002 .

[15]  Igor E. Shparlinski,et al.  On the Hidden Shifted Power Problem , 2011, SIAM J. Comput..

[16]  D. A. Burgess On Character Sums and Primitive Roots , 1962 .

[17]  I. Shkredov Growth in Chevalley groups relatively to parabolic subgroups and some applications , 2020, Revista Matemática Iberoamericana.

[18]  D. A. Burgess A Note on the Distribution of Residues and Non-Residues , 1963 .

[19]  I. Shkredov,et al.  Popular products and continued fractions , 2018, Israel Journal of Mathematics.

[20]  Oren Dinai Growth in SL2 over finite fields , 2010 .

[21]  Ilya D. Shkredov On multiplicative Chung--Diaconis--Graham process , 2021 .

[22]  I. Shparlinski,et al.  A Refinement of the Burgess Bound for Character Sums , 2017, Michigan Mathematical Journal.