Semiparametric estimation of the link function in binary-choice single-index models
暂无分享,去创建一个
[1] J. Horowitz. Semiparametric Methods in Econometrics , 2011 .
[2] R. Fairlie. An Extension of the Blinder-Oaxaca Decomposition Technique to Logit and Probit Models , 2006, SSRN Electronic Journal.
[3] James L. Powell,et al. Estimation of semiparametric models , 1994 .
[4] W. Härdle,et al. Direct Semiparametric Estimation of Single-Index Models with Discrete Covariates dpsfb950075.ps.tar = Enno MAMMEN J.S. MARRON: Mass Recentered Kernel Smoothers , 1996 .
[5] N. Hjort,et al. Nonparametric Density Estimation with a Parametric Start , 1995 .
[6] Songnian Chen. Efficient estimation of binary choice models under symmetry , 2000 .
[7] Thomas M. Stoker. Consistent estimation of scaled coefficients , 2011 .
[8] J. Horowitz. SEMIPARAMETRIC ESTIMATION OF A WORK-TRIP MODE-CHOICE MODEL / , 1993 .
[9] K. Le,et al. Estimating and decomposing changes in the White–Black homeownership gap from 2005 to 2011 , 2017 .
[10] Abdoul G. Sam,et al. Nonparametric Estimation of the Short Rate Diffusion from a Panel of Yields , 2008 .
[11] J. Horowitz. A Smoothed Maximum Score Estimator for the Binary Response Model , 1992 .
[12] I. Glad. Parametrically guided nonparametric . regression , 2015 .
[13] M. C. Jones,et al. A Comparison of Higher-Order Bias Kernel Density Estimators , 1997 .
[14] S. Cosslett. Efficiency Bounds for Distribution-free Estimators of the Binary , 1987 .
[15] H. Ichimura,et al. SEMIPARAMETRIC LEAST SQUARES (SLS) AND WEIGHTED SLS ESTIMATION OF SINGLE-INDEX MODELS , 1993 .
[16] T. Iwami. Japan’s experiences under the Bretton Woods System: capital controls and fixed exchange rate , 2013 .
[17] C. Manski. MAXIMUM SCORE ESTIMATION OF THE STOCHASTIC UTILITY MODEL OF CHOICE , 1975 .
[18] Thomas M. Stoker,et al. Semiparametric Estimation of Index Coefficients , 1989 .
[19] Aman Ullah,et al. Nonparametric Econometrics: Introduction , 1999 .
[20] Manuel Wiesenfarth,et al. The Finite Sample Performance of Semi- and Nonparametric Estimators for Treatment Effects and Policy Evaluation , 2017, Comput. Stat. Data Anal..
[21] H. Bierens. Advances in Econometrics: Kernel estimators of regression functions , 1987 .
[22] W. Härdle,et al. Optimal Smoothing in Single-index Models , 1993 .
[23] Ingrid K. Glad,et al. Parametrically Guided Non‐parametric Regression , 1998 .
[24] P. Ruud. Sufficient Conditions for the Consistency of Maximum Likelihood Estimation Despite Misspecifications of Distribution in Multinomial Discrete Choice Models , 1983 .
[25] Herman J. Bierens,et al. Uniform Consistency of Kernel Estimators of a Regression Function under Generalized Conditions , 1983 .
[26] S. Yakowitz,et al. Contributions to the Theory of Nonparametric Regression, with Application to System Identification , 1979 .
[27] Bert Fristedt,et al. A modern approach to probability theory , 1996 .
[28] I. Van Keilegom,et al. Semi‐parametric Estimation in a Single‐index Model with Endogenous Variables , 2017 .
[29] Abdoul G. Sam,et al. Agricultural Technology Adoption and Nonfarm Earnings in Uganda: A Semiparametric Analysis , 2014 .
[30] D. Andrews. CONSISTENCY IN NONLINEAR ECONOMETRIC MODELS: A GENERIC UNIFORM LAW OF LARGE NUMBERS , 1987 .
[31] Zvi Griliches,et al. Specification Error in Probit Models , 1985 .
[32] Joel L. Horowitz,et al. 2 Semiparametric and nonparametric estimation of quantal response models , 1993 .
[33] Alan P. Ker,et al. Nonparametric Regression Under Alternative Data Environments , 2004 .
[34] C. Manski. Identification of Binary Response Models , 1988 .
[35] A. Ullah,et al. Nonparametric Econometrics: Semiparametric and Nonparametric Estimation of Simultaneous Equation Models , 1999 .
[36] Matthew P. Wand,et al. Kernel Smoothing , 1995 .
[37] A. Ker,et al. The role of gender in fertiliser adoption in Uganda , 2015 .
[38] R. Spady,et al. AN EFFICIENT SEMIPARAMETRIC ESTIMATOR FOR BINARY RESPONSE MODELS , 1993 .