A two‐level domain decomposition method with accurate interface conditions for the Helmholtz problem

[1]  Murthy N. Guddati,et al.  Arbitrarily wide-angle wave equations for complex media , 2006 .

[2]  J. Mandel,et al.  An algebraic theory for primal and dual substructuring methods by constraints , 2005 .

[3]  Murthy N. Guddati,et al.  Accurate absorbing boundary conditions for anisotropic elastic media. Part 1: Elliptic anisotropy , 2012, J. Comput. Phys..

[4]  C. Farhat,et al.  FETI-DPH: A DUAL-PRIMAL DOMAIN DECOMPOSITION METHOD FOR ACOUSTIC SCATTERING , 2005 .

[5]  Christophe Geuzaine,et al.  Double sweep preconditioner for optimized Schwarz methods applied to the Helmholtz problem , 2014, J. Comput. Phys..

[6]  J. Mandel Balancing domain decomposition , 1993 .

[7]  Charbel Farhat,et al.  A domain decomposition method for discontinuous Galerkin discretizations of Helmholtz problems with plane waves and Lagrange multipliers , 2009 .

[8]  John L. Tassoulas,et al.  CONTINUED-FRACTION ABSORBING BOUNDARY CONDITIONS FOR THE WAVE EQUATION , 2000 .

[9]  M. Guddati,et al.  Continued fraction absorbing boundary conditions for convex polygonal domains , 2006 .

[10]  Martin J. Gander,et al.  Optimized Schwarz Methods without Overlap for the Helmholtz Equation , 2002, SIAM J. Sci. Comput..

[11]  Christophe Geuzaine,et al.  A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation , 2012, J. Comput. Phys..

[12]  Martin J. Gander,et al.  Domain Decomposition Methods for the Helmholtz Equation: A Numerical Investigation , 2013, Domain Decomposition Methods in Science and Engineering XX.

[13]  D. Rixen,et al.  FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .

[14]  Frank Schmidt,et al.  Domain decomposition method for Maxwell's equations: Scattering off periodic structures , 2006, J. Comput. Phys..

[15]  Lexing Ying,et al.  Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers , 2010, Multiscale Model. Simul..

[16]  Sébastien Loisel,et al.  Condition Number Estimates for the Nonoverlapping Optimized Schwarz Method and the 2-Lagrange Multiplier Method for General Domains and Cross Points , 2013, SIAM J. Numer. Anal..

[17]  Hongkai Zhao,et al.  Absorbing boundary conditions for domain decomposition , 1998 .

[18]  F. Magoulès,et al.  An optimized Schwarz method with two‐sided Robin transmission conditions for the Helmholtz equation , 2007 .

[19]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[20]  C. Farhat,et al.  Two-level domain decomposition methods with Lagrange multipliers for the fast iterative solution of acoustic scattering problems , 2000 .

[21]  Charbel Farhat,et al.  A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems , 2000, Numerische Mathematik.

[22]  Frédéric Magoulès,et al.  Absorbing interface conditions for domain decomposition methods: A general presentation , 2006 .

[23]  Christiaan C. Stolk,et al.  A rapidly converging domain decomposition method for the Helmholtz equation , 2012, J. Comput. Phys..

[24]  Senganal Thirunavukkarasu,et al.  Improving the Convergence of Schwarz Methods for Helmholtz Equation , 2013, Domain Decomposition Methods in Science and Engineering XX.

[25]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .