Groebner basis, resultants and the generalized Mandelbrot set
暂无分享,去创建一个
[1] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[2] Young Ik Kim,et al. Locating and counting bifurcation points of satellite components from the main component in the degree-n bifurcation set , 2006 .
[3] S. Krantz. Fractal geometry , 1989 .
[4] J. Gomatam,et al. Generalization of the Mandelbrot set: Quaternionic quadratic maps , 1995 .
[5] Robert L. Devaney,et al. A First Course in Chaotic Dynamical Systems , 2020 .
[6] Gonzalo Alvarez,et al. On periodic and chaotic regions in the Mandelbrot set , 2007 .
[7] Young Ik Kim,et al. An efficient construction of period-2 bulbs in the cubic Mandelbrot set with parametric boundaries , 2007 .
[8] Y. Fisher,et al. A parameterization of the period 3 hyperbolic components of the Mandelbrot set , 1995 .
[9] David A. Cox,et al. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .
[10] James R. Munkres,et al. Topology; a first course , 1974 .
[11] Denny Gulick. Encounters with Chaos , 1992 .
[12] C. Sparrow. The Fractal Geometry of Nature , 1984 .
[13] Rae A. Earnshaw,et al. Fractals and Chaos , 2011 .
[14] Ashish Negi,et al. Midgets of superior Mandelbrot set , 2008 .