Adaptive dynamical networks

[1]  Peter M. A. Sloot,et al.  Embracing complexity in sepsis , 2023, Critical Care.

[2]  D. Gauthier,et al.  Perspectives on adaptive dynamical systems. , 2023, Chaos.

[3]  W. de Haan,et al.  A multi-scale model explains oscillatory slowing and neuronal hyperactivity in Alzheimer’s disease , 2023, Journal of the Royal Society Interface.

[4]  A. Hramov,et al.  Forecasting macroscopic dynamics in adaptive Kuramoto network using reservoir computing. , 2022, Chaos.

[5]  P. Ivanov,et al.  Editorial: Adaptive networks in functional modeling of physiological systems , 2022, Frontiers in Network Physiology.

[6]  Mojtaba Madadi Asl,et al.  Delay-dependent transitions of phase synchronization and coupling symmetry between neurons shaped by spike-timing-dependent plasticity , 2022, Cognitive Neurodynamics.

[7]  E. Schöll,et al.  Heterogeneous Nucleation in Finite-Size Adaptive Dynamical Networks. , 2022, Physical review letters.

[8]  S. Jalan,et al.  First-order route to antiphase clustering in adaptive simplicial complexes. , 2022, Physical review. E.

[9]  S. Yanchuk,et al.  Collective Activity Bursting in a Population of Excitable Units Adaptively Coupled to a Pool of Resources , 2022, Frontiers in Network Physiology.

[10]  E. Schöll,et al.  Critical Parameters in Dynamic Network Modeling of Sepsis , 2022, Frontiers in Network Physiology.

[11]  Renaud Lambiotte,et al.  Consensus from group interactions: An adaptive voter model on hypergraphs , 2022, Physical review. E.

[12]  P. Tass,et al.  Asymmetric adaptivity induces recurrent synchronization in complex networks. , 2021, Chaos.

[13]  C. Kuehn,et al.  The influence of a transport process on the epidemic threshold , 2021, Journal of Mathematical Biology.

[14]  E. Schöll Partial synchronization patterns in brain networks , 2021, EPL (Europhysics Letters).

[15]  V. K. Chandrasekar,et al.  Exotic states induced by coevolving connection weights and phases in complex networks. , 2021, Physical review. E.

[16]  S. Jalan,et al.  Hebbian plasticity rules abrupt desynchronization in pure simplicial complexes , 2021, New Journal of Physics.

[17]  S. Levin,et al.  Sharp thresholds limit the benefit of defector avoidance in cooperation on networks , 2021, Proceedings of the National Academy of Sciences of the United States of America.

[18]  S. Boccaletti,et al.  The synchronized dynamics of time-varying networks , 2021, Physics Reports.

[19]  Christian Kuehn,et al.  Continuum limits for adaptive network dynamics , 2021, Communications in Mathematical Sciences.

[20]  P. Tass,et al.  Long-Term Desynchronization by Coordinated Reset Stimulation in a Neural Network Model With Synaptic and Structural Plasticity , 2021, Frontiers in Physiology.

[21]  Alexander L. Fradkov,et al.  A Historical Perspective of Adaptive Control and Learning , 2021, Annu. Rev. Control..

[22]  N. Fefferman,et al.  The role of social structure and dynamics in the maintenance of endemic disease , 2021, Behavioral Ecology and Sociobiology.

[23]  Christian Kuehn,et al.  Vlasov equations on digraph measures , 2021, Journal of Differential Equations.

[24]  V. Nekorkin,et al.  Transient circulant clusters in two-population network of Kuramoto oscillators with different rules of coupling adaptation. , 2021, Chaos.

[25]  P. Ivanov The New Field of Network Physiology: Building the Human Physiolome , 2021, Frontiers in Network Physiology.

[26]  E. Schöll,et al.  Modeling Tumor Disease and Sepsis by Networks of Adaptively Coupled Phase Oscillators , 2021, Frontiers in Network Physiology.

[27]  D. Ghosh,et al.  Coexistence of interdependence and competition in adaptive multilayer network , 2021 .

[28]  Serhiy Yanchuk,et al.  Synchronization in Networks With Heterogeneous Adaptation Rules and Applications to Distance-Dependent Synaptic Plasticity , 2021, Frontiers in Applied Mathematics and Statistics.

[29]  P. Tass,et al.  Multistability in a star network of Kuramoto-type oscillators with synaptic plasticity , 2021, Scientific Reports.

[30]  Tomasz Kapitaniak,et al.  Chimera complexity. , 2021, Physical review. E.

[31]  G. Gottwald,et al.  Mesoscopic model reduction for the collective dynamics of sparse coupled oscillator networks. , 2021, Chaos.

[32]  Bruce J. P. Mortimer,et al.  Coordinated Reset Vibrotactile Stimulation Induces Sustained Cumulative Benefits in Parkinson’s Disease , 2021, Frontiers in Physiology.

[33]  Nastassia Pouradier Duteil,et al.  Mean-field limit of collective dynamics with time-varying weights , 2021, Networks Heterog. Media.

[34]  V. Nekorkin,et al.  Emergence and synchronization of a reversible core in a system of forced adaptively coupled Kuramoto oscillators. , 2021, Chaos.

[35]  Christian Kuehn,et al.  Connecting a direct and a Galerkin approach to slow manifolds in infinite dimensions , 2021, Proceedings of the American Mathematical Society, Series B.

[36]  L. V. Gambuzza,et al.  Stability of synchronization in simplicial complexes , 2021, Nature Communications.

[37]  Sindre W. Haugland The changing notion of chimera states, a critical review , 2021, 2102.05515.

[38]  Justus A. Kromer,et al.  Long-Lasting Desynchronization of Plastic Neural Networks by Random Reset Stimulation , 2021, Frontiers in Physiology.

[39]  A. Motter,et al.  Mechanism for Strong Chimeras. , 2021, Physical review letters.

[40]  Serhiy Yanchuk,et al.  Effect of diluted connectivities on cluster synchronization of adaptively coupled oscillator networks , 2021, 2101.05601.

[41]  M. C. Soriano,et al.  Unveiling the role of plasticity rules in reservoir computing , 2021, Neurocomputing.

[42]  V. Mehrmann,et al.  The Multiplex Decomposition: An Analytic Framework for Multilayer Dynamical Networks , 2021, SIAM J. Appl. Dyn. Syst..

[43]  N. Ayi,et al.  Mean-field and graph limits for collective dynamics models with time-varying weights , 2020 .

[44]  Christian Kuehn,et al.  Balancing Quarantine and Self-Distancing Measures in Adaptive Epidemic Networks , 2020, Bulletin of Mathematical Biology.

[45]  Sarika Jalan,et al.  Interlayer Hebbian plasticity induces first-order transition in multiplex networks , 2020, New Journal of Physics.

[46]  Roxana Zeraati,et al.  Self-Organization Toward Criticality by Synaptic Plasticity , 2020, Frontiers in Physics.

[47]  S. Olmi,et al.  Emergent excitability in adaptive networks of non-excitable units. , 2020, 2010.06249.

[48]  K. Krischer,et al.  Self-Organized Multifrequency Clusters in an Oscillating Electrochemical System with Strong Nonlinear Coupling. , 2020, Physical review letters.

[49]  Iqtadar Hussain,et al.  Chimeras in an adaptive neuronal network with burst-timing-dependent plasticity , 2020, Neurocomputing.

[50]  E. Kuhl,et al.  Neuronal Oscillations on Evolving Networks: Dynamics, Damage, Degradation, Decline, Dementia, and Death. , 2020, Physical review letters.

[51]  H. Engel,et al.  First-order synchronization transition in a large population of strongly coupled relaxation oscillators , 2020, Science Advances.

[52]  Seong Hyun Park,et al.  Synchronization and resilience in the Kuramoto white matter network model with adaptive state-dependent delays , 2020, The Journal of Mathematical Neuroscience.

[53]  C. Kuehn,et al.  Slow manifolds for infinite-dimensional evolution equations , 2020, Commentarii Mathematici Helvetici.

[54]  Eckehard Schöll,et al.  Desynchronization Transitions in Adaptive Networks. , 2020, Physical review letters.

[55]  Justus A. Kromer,et al.  Impact of number of stimulation sites on long-lasting desynchronization effects of coordinated reset stimulation. , 2020, Chaos.

[56]  Justus A. Kromer,et al.  Long-lasting desynchronization by decoupling stimulation , 2020, Physical Review Research.

[57]  Christian Kuehn,et al.  Graphop Mean-Field Limits for Kuramoto-Type Models , 2020, SIAM J. Appl. Dyn. Syst..

[58]  Youssoufa Mohamadou,et al.  A review of mathematical modeling, artificial intelligence and datasets used in the study, prediction and management of COVID-19 , 2020, Applied Intelligence.

[59]  Philipp Hövel,et al.  Slow-Fast Dynamics in a Chaotic System with Strongly Asymmetric Memristive Element , 2020, Int. J. Bifurc. Chaos.

[60]  Alessandro Torcini,et al.  Exact neural mass model for synaptic-based working memory , 2020, bioRxiv.

[61]  Eckehard Schöll,et al.  What adaptive neuronal networks teach us about power grids. , 2020, Physical review. E.

[62]  Marc Timme,et al.  Vulnerability in dynamically driven oscillatory networks and power grids. , 2020, Chaos.

[63]  P. Feketa,et al.  Stability of cluster formations in adaptive Kuramoto networks , 2020, ArXiv.

[64]  V. Nekorkin,et al.  The third type of chaos in a system of two adaptively coupled phase oscillators. , 2020, Chaos.

[65]  V. Colizza,et al.  Active and inactive quarantine in epidemic spreading on adaptive activity-driven networks , 2020, Physical review. E.

[66]  M. San Miguel,et al.  Emergence of complex structures from nonlinear interactions and noise in coevolving networks , 2020, Scientific Reports.

[67]  Georg A. Gottwald,et al.  Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators. , 2020, Physical review. E.

[68]  Antonio Politi,et al.  Modeling active optical networks , 2020, 2004.04793.

[69]  Christian Kuehn,et al.  Coupled dynamics on hypergraphs: Master stability of steady states and synchronization. , 2020, Physical review. E.

[70]  J. Kurths,et al.  Interacting tipping elements increase risk of climate domino effects under global warming , 2020, Earth System Dynamics.

[71]  N. Boogert,et al.  Infected or informed? Social structure and the simultaneous transmission of information and infectious disease , 2020, Oikos.

[72]  Christian Kuehn,et al.  A universal route to explosive phenomena , 2020, Science Advances.

[73]  Danielle S. Bassett,et al.  Synchronization of coupled Kuramoto oscillators under resource constraints. , 2020, Physical review. E.

[74]  C. Kuehn Network dynamics on graphops , 2020, New Journal of Physics.

[75]  Tomasz Kapitaniak,et al.  Network-induced multistability through lossy coupling and exotic solitary states , 2020, Nature Communications.

[76]  S. Yanchuk,et al.  Dynamics of a stochastic excitable system with slowly adapting feedback. , 2020, Chaos.

[77]  A. Motter,et al.  Network experiment demonstrates converse symmetry breaking , 2020, Nature Physics.

[78]  W. Gerstner,et al.  Paradoxical Results of Long-Term Potentiation explained by Voltage-based Plasticity Rule , 2020, 2001.03614.

[79]  Bard Ermentrout,et al.  Recent advances in coupled oscillator theory , 2019, Philosophical Transactions of the Royal Society A.

[80]  Petro Feketa,et al.  Synchronization and Multicluster Capabilities of Oscillatory Networks With Adaptive Coupling , 2019, IEEE Transactions on Automatic Control.

[81]  I. Franović,et al.  Two paradigmatic scenarios for inverse stochastic resonance. , 2019, Chaos.

[82]  Serhiy Yanchuk,et al.  Solitary states in adaptive nonlocal oscillator networks , 2019, The European Physical Journal Special Topics.

[83]  V. Nekorkin,et al.  On the intersection of a chaotic attractor and a chaotic repeller in the system of two adaptively coupled phase oscillators. , 2019, Chaos.

[84]  Sarika Jalan,et al.  Interlayer adaptation-induced explosive synchronization in multiplex networks , 2019, 1910.10433.

[85]  Richard Gast,et al.  A Mean-Field Description of Bursting Dynamics in Spiking Neural Networks with Short-Term Adaptation , 2019, bioRxiv.

[86]  Lachlan D. Smith,et al.  Model reduction for the collective dynamics of globally coupled oscillators: From finite networks to the thermodynamic limit. , 2019, Chaos.

[87]  E. Schöll,et al.  Birth and Stabilization of Phase Clusters by Multiplexing of Adaptive Networks. , 2019, Physical review letters.

[88]  Edgar Knobloch,et al.  Chimerapedia: coherence–incoherence patterns in one, two and three dimensions , 2019, New Journal of Physics.

[89]  C. Kuehn,et al.  Adaptive voter model on simplicial complexes. , 2019, Physical review. E.

[90]  Simona Olmi,et al.  Control of synchronization in two-layer power grids. , 2019, Physical review. E.

[91]  O. Popovych,et al.  Frequency cluster formation and slow oscillations in neural populations with plasticity , 2019, PloS one.

[92]  Andreas Daffertshofer,et al.  Network dynamics of coupled oscillators and phase reduction techniques , 2019, Physics Reports.

[93]  Kuangrong Hao,et al.  Echo state networks regulated by local intrinsic plasticity rules for regression , 2019, Neurocomputing.

[94]  Alex Arenas,et al.  Explosive phenomena in complex networks , 2019, Advances in Physics.

[95]  Igor M. Sokolov,et al.  Modeling echo chambers and polarization dynamics in social networks , 2019, Physical review letters.

[96]  Simona Olmi,et al.  Stability and control of power grids with diluted network topology. , 2019, Chaos.

[97]  Arkady Pikovsky,et al.  Nonlinear phase coupling functions: a numerical study , 2019, Philosophical Transactions of the Royal Society A.

[98]  Lachlan D. Smith,et al.  Chaos in networks of coupled oscillators with multimodal natural frequency distributions. , 2019, Chaos.

[99]  Eckehard Schöll,et al.  Hierarchical frequency clusters in adaptive networks of phase oscillators. , 2019, Chaos.

[100]  Hildeberto Jard'on-Kojakhmetov,et al.  On Fast–Slow Consensus Networks with a Dynamic Weight , 2019, J. Nonlinear Sci..

[101]  Tiago P. Peixoto Network Reconstruction and Community Detection from Dynamics , 2019, Physical review letters.

[102]  Soumen Majhi,et al.  Chimera states in neuronal networks: A review. , 2019, Physics of life reviews.

[103]  Christian Kuehn,et al.  Multiscale dynamics of an adaptive catalytic network , 2019, Mathematical Modelling of Natural Phenomena.

[104]  Yu-Shuang Hou,et al.  Prediction and classification performance of reservoir computing system using mutually delay-coupled semiconductor lasers , 2019, Optics Communications.

[105]  G. Altan-Bonnet,et al.  Cytokine-mediated communication: a quantitative appraisal of immune complexity , 2019, Nature Reviews Immunology.

[106]  C. Laing,et al.  Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review , 2019, The Journal of Mathematical Neuroscience.

[107]  Simona Olmi,et al.  Enhancing power grid synchronization and stability through time-delayed feedback control. , 2019, Physical review. E.

[108]  Tao Zhou,et al.  Coevolution spreading in complex networks , 2019, Physics Reports.

[109]  Christian Kuehn,et al.  A survey on the blow-up method for fast-slow systems , 2019, Mexican Mathematicians in the World.

[110]  Huaiping Zhu,et al.  Complex dynamics of epidemic models on adaptive networks , 2019, Journal of Differential Equations.

[111]  Wulfram Gerstner,et al.  Mesoscopic population equations for spiking neural networks with synaptic short-term plasticity , 2018, The Journal of Mathematical Neuroscience.

[112]  Peter A. Tass,et al.  Dendritic and Axonal Propagation Delays May Shape Neuronal Networks With Plastic Synapses , 2018, Front. Physiol..

[113]  M. Perc,et al.  Inverse stochastic resonance in a system of excitable active rotators with adaptive coupling , 2018, EPL (Europhysics Letters).

[114]  A. Pentland,et al.  An interpretable approach for social network formation among heterogeneous agents , 2018, Nature Communications.

[115]  M. Rosenblum,et al.  Numerical phase reduction beyond the first order approximation. , 2018, Chaos.

[116]  B. Szegedy,et al.  Action convergence of operators and graphs , 2018, Canadian Journal of Mathematics.

[117]  S. Yanchuk,et al.  Noise-induced switching in two adaptively coupled excitable systems , 2018, The European Physical Journal Special Topics.

[118]  Vladimir Nekorkin,et al.  The effect of topology on organization of synchronous behavior in dynamical networks with adaptive couplings , 2018, The European Physical Journal Special Topics.

[119]  Suparna Roychoudhury Chimeras , 2018, Phantasmatic Shakespeare.

[120]  Faryad Darabi Sahneh,et al.  Contact Adaption During Epidemics: A Multilayer Network Formulation Approach , 2017, IEEE Transactions on Network Science and Engineering.

[121]  Eckehard Schöll,et al.  Multiclusters in Networks of Adaptively Coupled Phase Oscillators , 2018, SIAM J. Appl. Dyn. Syst..

[122]  V I Nekorkin,et al.  Synchronization of chimera states in a multiplex system of phase oscillators with adaptive couplings. , 2018, Chaos.

[123]  T. Britton,et al.  A stochastic SIR network epidemic model with preventive dropping of edges , 2018, Journal of Mathematical Biology.

[124]  Vladimir I Nekorkin,et al.  Itinerant chimeras in an adaptive network of pulse-coupled oscillators. , 2018, Physical review. E.

[125]  Alexander E. Hramov,et al.  Inter-layer competition in adaptive multiplex network , 2018, New Journal of Physics.

[126]  Christian Kuehn,et al.  Power Network Dynamics on Graphons , 2018, SIAM J. Appl. Math..

[127]  Michelle Monje,et al.  Myelin Plasticity and Nervous System Function. , 2018, Annual review of neuroscience.

[128]  Simona Olmi,et al.  Effect of disorder and noise in shaping the dynamics of power grids , 2018, EPL (Europhysics Letters).

[129]  Arindam Basu,et al.  Synergistic Gating of Electro‐Iono‐Photoactive 2D Chalcogenide Neuristors: Coexistence of Hebbian and Homeostatic Synaptic Metaplasticity , 2018, Advanced materials.

[130]  Alexander Peyser,et al.  Toward Rigorous Parameterization of Underconstrained Neural Network Models Through Interactive Visualization and Steering of Connectivity Generation , 2018, Front. Neuroinform..

[131]  Seung-Yeal Ha,et al.  Emergent Dynamics of Kuramoto Oscillators with Adaptive Couplings: Conservation Law and Fast Learning , 2018, SIAM J. Appl. Dyn. Syst..

[132]  Christian Kuehn,et al.  Network topology near criticality in adaptive epidemics , 2018, Physical Review E.

[133]  Hayato Chiba,et al.  Bifurcations in the Kuramoto model on graphs. , 2018, Chaos.

[134]  E. J. Hancock,et al.  Model reduction for Kuramoto models with complex topologies. , 2018, Physical review. E.

[135]  Chuang Liu,et al.  Coupling dynamics of epidemic spreading and information diffusion on complex networks , 2018, Applied Mathematics and Computation.

[136]  O. Omel'chenko,et al.  The mathematics behind chimera states , 2018 .

[137]  Kenneth Showalter,et al.  Multistability and tipping: From mathematics and physics to climate and brain-Minireview and preface to the focus issue. , 2018, Chaos.

[138]  Marcello Colombino,et al.  The Effect of Transmission-Line Dynamics on Grid-Forming Dispatchable Virtual Oscillator Control , 2018, IEEE Transactions on Control of Network Systems.

[139]  Dirk Witthaut,et al.  Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics , 2018, Nature Energy.

[140]  Yang Yang,et al.  Cascading Failures as Continuous Phase-Space Transitions. , 2017, Physical review letters.

[141]  Simona Olmi,et al.  Qualitative stability and synchronicity analysis of power network models in port-Hamiltonian form. , 2017, Chaos.

[142]  V I Nekorkin,et al.  Self-organized emergence of multilayer structure and chimera states in dynamical networks with adaptive couplings. , 2017, Physical review. E.

[143]  Jonathan F. Donges,et al.  Towards representing human behavior and decision making in Earth system models – an overview of techniques and approaches , 2017 .

[144]  I Leyva,et al.  Emergent explosive synchronization in adaptive complex networks. , 2017, Physical review. E.

[145]  Konstantin Klemm,et al.  Transitions from Trees to Cycles in Adaptive Flow Networks , 2017, Front. Phys..

[146]  D. Lyons,et al.  On Myelinated Axon Plasticity and Neuronal Circuit Formation and Function , 2017, The Journal of Neuroscience.

[147]  Georgi S. Medvedev,et al.  The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations , 2017, Discrete & Continuous Dynamical Systems - A.

[148]  Nuno Crokidakis,et al.  Sudden transitions in coupled opinion and epidemic dynamics with vaccination , 2017, ArXiv.

[149]  C. ffrench-Constant,et al.  Intrinsic and adaptive myelination—A sequential mechanism for smart wiring in the brain , 2017, Developmental neurobiology.

[150]  Woochang Lim,et al.  Effect of spike-timing-dependent plasticity on stochastic burst synchronization in a scale-free neuronal network , 2017, Cognitive Neurodynamics.

[151]  Marc Timme,et al.  Dynamically induced cascading failures in power grids , 2017, Nature Communications.

[152]  Maxi San Miguel,et al.  Fragmentation transitions in a coevolving nonlinear voter model , 2017, Scientific Reports.

[153]  Vladimir I. Nekorkin,et al.  Adaptive dynamical networks , 2017 .

[154]  Georgi S. Medvedev,et al.  The Mean Field Equation for the Kuramoto Model on Graph Sequences with Non-Lipschitz Limit , 2017, SIAM J. Math. Anal..

[155]  Premananda Indic,et al.  Emergence of local synchronization in neuronal networks with adaptive couplings , 2017, PloS one.

[156]  Danielle S Bassett,et al.  Multi-scale detection of hierarchical community architecture in structural and functional brain networks , 2017, PloS one.

[157]  Tomasz Kapitaniak,et al.  Solitary states for coupled oscillators with inertia. , 2017, Chaos.

[158]  Artur Stephan,et al.  Phase response function for oscillators with strong forcing or coupling , 2017, 1703.05611.

[159]  Mirko Hansen,et al.  Double-Barrier Memristive Devices for Unsupervised Learning and Pattern Recognition , 2017, Front. Neurosci..

[160]  Jürgen Kurths,et al.  Stability of synchrony against local intermittent fluctuations in tree-like power grids. , 2017, Chaos.

[161]  Thilo Gross,et al.  Dynamics of epidemic diseases on a growing adaptive network , 2017, Scientific Reports.

[162]  Giovanni Giacomelli,et al.  Spatio-temporal phenomena in complex systems with time delays , 2017, 2206.03120.

[163]  L. Böttcher,et al.  Critical Behaviors in Contagion Dynamics , 2017, Physical Review Letters.

[164]  Leonhard Lücken,et al.  Pattern reverberation in networks of excitable systems with connection delays. , 2017, Chaos.

[165]  Georgi S. Medvedev,et al.  The mean field analysis of the Kuramoto model on graphs Ⅰ. The mean field equation and transition point formulas , 2016, Discrete & Continuous Dynamical Systems - A.

[166]  Marc Wiedermann,et al.  Zealotry effects on opinion dynamics in the adaptive voter model. , 2016, Physical review. E.

[167]  Klaus Obermayer,et al.  Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation , 2016, PLoS Comput. Biol..

[168]  Yaochu Jin,et al.  Modeling neural plasticity in echo state networks for classification and regression , 2016, Inf. Sci..

[169]  J. A. Almendral,et al.  Explosive transitions in complex networks’ structure and dynamics: Percolation and synchronization , 2016, 1610.01361.

[170]  Dawei Zhao,et al.  Statistical physics of vaccination , 2016, ArXiv.

[171]  I. Belykh,et al.  Bistability of patterns of synchrony in Kuramoto oscillators with inertia. , 2016, Chaos.

[172]  Vladimir Nekorkin,et al.  Dynamics of a network of phase oscillators with plastic couplings , 2016 .

[173]  E. Schöll Chimera states and excitation waves in networks with complex topologies , 2016 .

[174]  Abigail Morrison,et al.  Automatic Generation of Connectivity for Large-Scale Neuronal Network Models through Structural Plasticity , 2016, Front. Neuroanat..

[175]  Woodrow L. Shew,et al.  Metabolite transport through glial networks stabilizes the dynamics of learning , 2016, 1605.03090.

[176]  Vladimir Nekorkin,et al.  Dynamics of the Phase Oscillators with Plastic Couplings , 2016 .

[177]  J. Barré,et al.  Bifurcations and Singularities for Coupled Oscillators with Inertia and Frustration. , 2016, Physical review letters.

[178]  Georgi S. Medvedev,et al.  The Semilinear Heat Equation on Sparse Random Graphs , 2016, SIAM J. Math. Anal..

[179]  Thilo Gross,et al.  Network inoculation: Heteroclinics and phase transitions in an epidemic model , 2016, Chaos.

[180]  Ming Tang,et al.  Suppressing disease spreading by using information diffusion on multiplex networks , 2016, Scientific Reports.

[181]  Tobias Welte,et al.  Hospital Incidence and Mortality Rates of Sepsis. , 2016, Deutsches Arzteblatt international.

[182]  Javier M. Buldú,et al.  Emergence of a multilayer structure in adaptive networks of phase oscillators , 2016 .

[183]  Victor M. Preciado,et al.  Epidemic Processes over Adaptive State-Dependent Networks , 2016, Physical review. E.

[184]  Adrian Carro,et al.  The noisy voter model on complex networks , 2016, Scientific Reports.

[185]  Michael A. Andrews,et al.  The impacts of simultaneous disease intervention decisions on epidemic outcomes , 2016, Journal of Theoretical Biology.

[186]  Seung‐Yeal Ha,et al.  Synchronization of Kuramoto Oscillators with Adaptive Couplings , 2016, SIAM J. Appl. Dyn. Syst..

[187]  S. Olmi Chimera states in coupled Kuramoto oscillators with inertia. , 2015, Chaos.

[188]  Joan Saldaña,et al.  A Network Epidemic Model with Preventive Rewiring: Comparative Analysis of the Initial Phase , 2015, Bulletin of Mathematical Biology.

[189]  Thomas K. D. M. Peron,et al.  The Kuramoto model in complex networks , 2015, 1511.07139.

[190]  R. Douglas Fields,et al.  A new mechanism of nervous system plasticity: activity-dependent myelination , 2015, Nature Reviews Neuroscience.

[191]  Guido Caldarelli,et al.  Concurrent enhancement of percolation and synchronization in adaptive networks , 2015, Scientific Reports.

[192]  M. Timme,et al.  Critical Links and Nonlocal Rerouting in Complex Supply Networks. , 2015, Physical review letters.

[193]  Enrique Mallada,et al.  Synchronization of phase-coupled oscillators with plastic coupling strength , 2015, 2015 Information Theory and Applications Workshop (ITA).

[194]  Jurgen Kurths,et al.  The impact of model detail on power grid resilience measures , 2015, 1510.05640.

[195]  Mirko Hansen,et al.  A memristive spiking neuron with firing rate coding , 2015, Front. Neurosci..

[196]  Piet Van Mieghem,et al.  From epidemics to information propagation: striking differences in structurally similar adaptive network models. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[197]  S. Scarpino,et al.  Prudent behaviour accelerates disease transmission , 2015, 1509.00801.

[198]  Albert-László Barabási,et al.  Control Principles of Complex Networks , 2015, ArXiv.

[199]  Petter Holme,et al.  Modern temporal network theory: a colloquium , 2015, The European Physical Journal B.

[200]  Thilo Gross,et al.  Adaptive network models of collective decision making in swarming systems. , 2015, Physical review. E.

[201]  Lin Wang,et al.  Coupled disease–behavior dynamics on complex networks: A review , 2015, Physics of Life Reviews.

[202]  Shuang Li,et al.  COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution , 2015, NIPS.

[203]  Wei Lu,et al.  Biorealistic Implementation of Synaptic Functions with Oxide Memristors through Internal Ionic Dynamics , 2015 .

[204]  Leonhard Lücken,et al.  Noise-enhanced coupling between two oscillators with long-term plasticity. , 2015, Physical review. E.

[205]  Ana-Andreea Stoica,et al.  Modeling epidemics on adaptively evolving networks: A data-mining perspective , 2015, Virulence.

[206]  Woodrow L. Shew,et al.  Adaptation to sensory input tunes visual cortex to criticality , 2015, Nature Physics.

[207]  Stephen Coombes,et al.  Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience , 2015, The Journal of Mathematical Neuroscience.

[208]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[209]  G. Gottwald Model reduction for networks of coupled oscillators. , 2015, Chaos.

[210]  Christian Kuehn,et al.  Moment Closure—A Brief Review , 2015, 1505.02190.

[211]  Romeo Ortega,et al.  Modeling of microgrids - from fundamental physics to phasors and voltage sources , 2015, Autom..

[212]  Wolfgang Lucht,et al.  Macroscopic description of complex adaptive networks coevolving with dynamic node states. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[213]  P. Tass,et al.  The Spacing Principle for Unlearning Abnormal Neuronal Synchrony , 2015, PloS one.

[214]  Ming Tang,et al.  Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes , 2015, Scientific Reports.

[215]  Takaaki Aoki,et al.  Self-organization of a recurrent network under ongoing synaptic plasticity , 2015, Neural Networks.

[216]  Tomasz Kapitaniak,et al.  Chimera states on the route from coherence to rotating waves. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[217]  Adilson E. Motter,et al.  Comparative analysis of existing models for power-grid synchronization , 2015, 1501.06926.

[218]  T. Aoyagi,et al.  Self-organization of complex networks as a dynamical system. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[219]  P. Hövel,et al.  Excitation waves on a minimal small-world model , 2014, 1412.5970.

[220]  T. Pereira,et al.  Explosive synchronization is discontinuous. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[221]  P M Hui,et al.  Phase transitions in a coevolving snowdrift game with costly rewiring. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[222]  Ming Tang,et al.  Suppression of epidemic spreading in complex networks by local information based behavioral responses , 2014, Chaos.

[223]  Luc Berthouze,et al.  Oscillating epidemics in a dynamic network model: stochastic and mean-field analysis , 2014, Journal of mathematical biology.

[224]  Zonghua Liu,et al.  Explosive synchronization in adaptive and multilayer networks. , 2014, Physical review letters.

[225]  Thilo Gross,et al.  Self-organized criticality as a fundamental property of neural systems , 2014, Front. Syst. Neurosci..

[226]  Y. Maistrenko,et al.  Imperfect chimera states for coupled pendula , 2014, Scientific Reports.

[227]  P. J. Basser,et al.  Role of myelin plasticity in oscillations and synchrony of neuronal activity , 2014, Neuroscience.

[228]  E. Schöll,et al.  Effect of small-world topology on wave propagation on networks of excitable elements , 2014, 1408.5731.

[229]  Piet Van Mieghem,et al.  Epidemic processes in complex networks , 2014, ArXiv.

[230]  M. Timme,et al.  Revealing networks from dynamics: an introduction , 2014, 1408.2963.

[231]  P. Ashwin,et al.  Weak chimeras in minimal networks of coupled phase oscillators. , 2014, Chaos.

[232]  U. Feudel,et al.  Control of multistability , 2014 .

[233]  Simona Olmi,et al.  Hysteretic transitions in the Kuramoto model with inertia. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[234]  L Berthouze,et al.  Impact of constrained rewiring on network structure and node dynamics. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[235]  Jobst Heitzig,et al.  How dead ends undermine power grid stability , 2014, Nature Communications.

[236]  Florian Dörfler,et al.  Synchronization in complex networks of phase oscillators: A survey , 2014, Autom..

[237]  Philipp Hövel,et al.  Controlling cluster synchronization by adapting the topology. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[238]  Ming Tang,et al.  Asymmetrically interacting spreading dynamics on complex layered networks , 2014, Scientific Reports.

[239]  Yingjie Xia,et al.  Epidemic spreading on weighted adaptive networks , 2014 .

[240]  Alexander S. Mikhailov,et al.  Propagation failure of excitation waves on trees and random networks , 2014, 1403.7989.

[241]  Mason A. Porter,et al.  Dynamical Systems on Networks: A Tutorial , 2014, ArXiv.

[242]  Marina Diakonova,et al.  Absorbing and shattered fragmentation transitions in multilayer coevolution. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[243]  P. Glendinning,et al.  Hierarchy and polysynchrony in an adaptive network. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[244]  M. Rosenblum,et al.  Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[245]  Christian Kuehn,et al.  Early warning signs for saddle-escape transitions in complex networks , 2014, Scientific Reports.

[246]  Michael Small,et al.  Basin of attraction determines hysteresis in explosive synchronization. , 2014, Physical review letters.

[247]  M. Mitchell Waldrop,et al.  Neuroelectronics: Smart connections , 2013, Nature.

[248]  Matthias H Hennig Theoretical models of synaptic short term plasticity , 2013, Front. Comput. Neurosci..

[249]  Tilman Weckesser,et al.  Impact of model detail of synchronous machines on real-time transient stability assessment , 2013, 2013 IREP Symposium Bulk Power System Dynamics and Control - IX Optimization, Security and Control of the Emerging Power Grid.

[250]  Peter A. Tass,et al.  Self-organized noise resistance of oscillatory neural networks with spike timing-dependent plasticity , 2013, Scientific Reports.

[251]  P. Van Mieghem,et al.  Epidemic threshold and topological structure of susceptible-infectious-susceptible epidemics in adaptive networks. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[252]  M. Butz,et al.  Correction: A Simple Rule for Dendritic Spine and Axonal Bouton Formation Can Account for Cortical Reorganization after Focal Retinal Lesions , 2013, PLoS Computational Biology.

[253]  Constantinos Dovrolis,et al.  Co-evolutionary dynamics in social networks: a case study of Twitter , 2013, Computational Social Networks.

[254]  Jie Zhou,et al.  Link-based formalism for time evolution of adaptive networks. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[255]  Caterina Scoglio,et al.  Mitigation of epidemics in contact networks through optimal contact adaptation. , 2013, Mathematical biosciences and engineering : MBE.

[256]  J. Saldaña,et al.  Outbreak analysis of an SIS epidemic model with rewiring , 2013, Journal of mathematical biology.

[257]  L Q English,et al.  Synchronization in phase-coupled Kuramoto oscillator networks with axonal delay and synaptic plasticity. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[258]  Ingo Scholtes,et al.  Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks , 2013, Nature Communications.

[259]  Joachim Peinke,et al.  Self-organized synchronization and voltage stability in networks of synchronous machines , 2013, ArXiv.

[260]  Georgi S. Medvedev,et al.  Small-world networks of Kuramoto oscillators , 2013, 1307.0798.

[261]  S. P. Cornelius,et al.  Realistic control of network dynamics , 2013, Nature Communications.

[262]  M. Lakshmanan,et al.  Adaptive coupling induced multi-stable states in complex networks , 2013, 1306.4114.

[263]  Sergio Gómez,et al.  On the dynamical interplay between awareness and epidemic spreading in multiplex networks , 2013, Physical review letters.

[264]  Georgi S. Medvedev,et al.  The Nonlinear Heat Equation on W-Random Graphs , 2013, 1305.2167.

[265]  Thilo Gross,et al.  Consensus time and conformity in the adaptive voter model. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[266]  S Shai,et al.  Coupled adaptive complex networks. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[267]  M. C. Soriano,et al.  Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers , 2013 .

[268]  Thilo Gross,et al.  Exploring the adaptive voter model dynamics with a mathematical triple jump , 2013, 1302.2743.

[269]  Seth A. Myers,et al.  Spontaneous synchrony in power-grid networks , 2013, Nature Physics.

[270]  M. Pickett,et al.  A scalable neuristor built with Mott memristors. , 2013, Nature materials.

[271]  F. Golse On the Dynamics of Large Particle Systems in the Mean Field Limit , 2013, 1301.5494.

[272]  Leah B. Shaw,et al.  Effects of community structure on epidemic spread in an adaptive network , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[273]  K. J. Ray Liu,et al.  Distributed Adaptive Networks: A Graphical Evolutionary Game-Theoretic View , 2012, IEEE Transactions on Signal Processing.

[274]  Kaspar Anton Schindler,et al.  Synchronization and desynchronization in epilepsy: controversies and hypotheses , 2012, The Journal of physiology.

[275]  Gengui Zhou,et al.  A network growth model based on the evolutionary ultimatum game , 2012 .

[276]  T. Gross,et al.  Moment-Closure Approximations for Discrete Adaptive Networks , 2012, 1211.0449.

[277]  M. Wolfrum,et al.  Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model. , 2012, Physical review letters.

[278]  J. Gleeson Binary-state dynamics on complex networks: pair approximation and beyond , 2012, 1209.2983.

[279]  Marc Timme,et al.  Self-organized synchronization in decentralized power grids. , 2012, Physical review letters.

[280]  F. Bullo,et al.  Synchronization in complex oscillator networks and smart grids , 2012, Proceedings of the National Academy of Sciences.

[281]  Satu Elisa Schaeffer,et al.  Assortative and modular networks are shaped by adaptive synchronization processes. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[282]  J. Restrepo,et al.  Complex macroscopic behavior in systems of phase oscillators with adaptive coupling , 2012, 1207.3102.

[283]  Wolfgang Kinzel,et al.  Pulsed chaos synchronization in networks with adaptive couplings. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[284]  Catherine Mills,et al.  Stochastic oscillations of adaptive networks: application to epidemic modelling , 2012, 1206.2768.

[285]  Philipp Hövel,et al.  Synchronization of Coupled Neural oscillators with Heterogeneous delays , 2012, Int. J. Bifurc. Chaos.

[286]  Hui Yang,et al.  Efficient community-based control strategies in adaptive networks , 2012, 1205.4352.

[287]  Thomas House,et al.  From Markovian to pairwise epidemic models and the performance of moment closure approximations , 2012, Journal of mathematical biology.

[288]  J. A. Scott Kelso,et al.  Multistability and metastability: understanding dynamic coordination in the brain , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[289]  L Wong,et al.  Epidemic reemergence in adaptive complex networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[290]  R. Durrett,et al.  Graph fission in an evolving voter model , 2012, Proceedings of the National Academy of Sciences.

[291]  J. Guckenheimer,et al.  Computing Slow Manifolds of Saddle Type , 2012, SIAM J. Appl. Dyn. Syst..

[292]  Wenwu Yu,et al.  Distributed Adaptive Control of Synchronization in Complex Networks , 2012, IEEE Transactions on Automatic Control.

[293]  Lidia A. Braunstein,et al.  Intermittent social distancing strategy for epidemic control , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[294]  Toshio Aoyagi,et al.  Self-organized network of phase oscillators coupled by activity-dependent interactions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[295]  J Gómez-Gardeñes,et al.  Emerging meso- and macroscales from synchronization of adaptive networks. , 2011, Physical review letters.

[296]  Ana Nunes,et al.  The structure of coevolving infection networks , 2011, 1111.7267.

[297]  David G. Rand,et al.  Dynamic social networks promote cooperation in experiments with humans , 2011, Proceedings of the National Academy of Sciences.

[298]  C. Kuehn Time-scale and noise optimality in self-organized critical adaptive networks. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[299]  Gerd Zschaler,et al.  Early fragmentation in the adaptive voter model on directed networks. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[300]  Shivakumar Jolad,et al.  Epidemic Spreading on Preferred Degree Adaptive Networks , 2011, PloS one.

[301]  Vito Latora,et al.  Emergence of structural patterns out of synchronization in networks with competitive interactions , 2011, Scientific reports.

[302]  Mehran Mesbahi,et al.  Dynamics and control of state-dependent networks for probing genomic organization , 2011, Proceedings of the National Academy of Sciences.

[303]  Qi Xuan,et al.  Structural control of reaction-diffusion networks. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[304]  Alessandro Vespignani,et al.  Modeling human mobility responses to the large-scale spreading of infectious diseases , 2011, Scientific reports.

[305]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[306]  Toshio Aoyagi,et al.  Scale-free structures emerging from co-evolution of a network and the distribution of a diffusive resource on it. , 2011, Physical review letters.

[307]  Wu-Jie Yuan,et al.  Interplay between structure and dynamics in adaptive complex networks: emergence and amplification of modularity by adaptive dynamics. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[308]  V. Botella-Soler,et al.  Emergence of hierarchical networks and polysynchronous behaviour in simple adaptive systems , 2011, 1107.1793.

[309]  R. Pastor-Satorras,et al.  Heterogenous mean-field analysis of a generalized voter-like model on networks , 2011, 1106.4215.

[310]  Ulf Dieckmann,et al.  A multiscale maximum entropy moment closure for locally regulated space–time point process models of population dynamics , 2011, Journal of mathematical biology.

[311]  J. Gleeson High-accuracy approximation of binary-state dynamics on networks. , 2011, Physical review letters.

[312]  T. Geisel,et al.  Natural human mobility patterns and spatial spread of infectious diseases , 2011, 1103.6224.

[313]  Martin Hasler,et al.  Mesoscale and clusters of synchrony in networks of bursting neurons. , 2011, Chaos.

[314]  T. Rogers Maximum-entropy moment-closure for stochastic systems on networks , 2011, 1103.4980.

[315]  Thilo Gross,et al.  Cyclic dominance in adaptive networks , 2011 .

[316]  Pak Ming Hui,et al.  Separatrices between healthy and endemic states in an adaptive epidemic model , 2011 .

[317]  Mario di Bernardo,et al.  On QUAD, Lipschitz, and Contracting Vector Fields for Consensus and Synchronization of Networks , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[318]  Sergio Gómez,et al.  Explosive synchronization transitions in scale-free networks. , 2011, Physical review letters.

[319]  M. G. Cosenza,et al.  General coevolution of topology and dynamics in networks , 2011, 1102.3467.

[320]  J. Fell,et al.  The role of phase synchronization in memory processes , 2011, Nature Reviews Neuroscience.

[321]  Kazuyuki Aihara,et al.  Epidemic spread in adaptive networks with multitype agents , 2011 .

[322]  Christian Kuehn,et al.  A Mathematical Framework for Critical Transitions: Normal Forms, Variance and Applications , 2011, J. Nonlinear Sci..

[323]  Thilo Gross,et al.  Analytical calculation of fragmentation transitions in adaptive networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[324]  Tian Qiu,et al.  Time scales of epidemic spread and risk perception on adaptive networks , 2010, 1011.1621.

[325]  R. Fields Change in the Brain's White Matter , 2010, Science.

[326]  Edward T. Bullmore,et al.  Modular and Hierarchically Modular Organization of Brain Networks , 2010, Front. Neurosci..

[327]  C. Stam,et al.  Emergence of modular structure in a large-scale brain network with interactions between dynamics and connectivity , 2022 .

[328]  Gerd Zschaler,et al.  Adaptive-network models of swarm dynamics , 2010, 1009.2349.

[329]  V. Jansen,et al.  Modelling the influence of human behaviour on the spread of infectious diseases: a review , 2010, Journal of The Royal Society Interface.

[330]  P DeLellis,et al.  Synchronization and control of complex networks via contraction, adaptation and evolution , 2010, IEEE Circuits and Systems Magazine.

[331]  Hermann Riecke,et al.  Adaptive oscillator networks with conserved overall coupling: sequential firing and near-synchronized states. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[332]  Sven Van Segbroeck,et al.  Adaptive Contact Networks Change Effective Disease Infectiousness and Dynamics , 2010, PLoS Comput. Biol..

[333]  Maurizio Porfiri,et al.  Evolution of Complex Networks via Edge Snapping , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[334]  Wenwu Yu,et al.  Second-Order Consensus for Multiagent Systems With Directed Topologies and Nonlinear Dynamics , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[335]  L. Hébert-Dufresne,et al.  Adaptive networks: Coevolution of disease and topology. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[336]  I. Kiss,et al.  The impact of information transmission on epidemic outbreaks. , 2010, Mathematical biosciences.

[337]  W. Gerstner,et al.  Connectivity reflects coding: a model of voltage-based STDP with homeostasis , 2010, Nature Neuroscience.

[338]  Bernd Krauskopf,et al.  Numerical continuation of canard orbits in slow–fast dynamical systems , 2010 .

[339]  Adilson E. Motter,et al.  Nonlinear dynamics: Spontaneous synchrony breaking , 2010, 1003.2465.

[340]  Johannes J. Letzkus,et al.  Dendritic Synapse Location and Neocortical Spike-Timing-Dependent Plasticity , 2010, Front. Syn. Neurosci..

[341]  A. Tero,et al.  Rules for Biologically Inspired Adaptive Network Design , 2010, Science.

[342]  Florian Dörfler,et al.  Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators , 2009, Proceedings of the 2010 American Control Conference.

[343]  Edward Ott,et al.  The stability of adaptive synchronization of chaotic systems. , 2009, Chaos.

[344]  Arne Traulsen,et al.  A homoclinic route to asymptotic full cooperation in adaptive networks and its failure , 2009, 0910.0940.

[345]  Attila Szolnoki,et al.  Coevolutionary Games - A Mini Review , 2009, Biosyst..

[346]  Tadeusz Płatkowski,et al.  A mechanism of dynamical interactions for two-person social dilemmas. , 2009, Journal of theoretical biology.

[347]  M. Perc,et al.  Emergence of multilevel selection in the prisoner's dilemma game on coevolving random networks , 2009, 0909.4019.

[348]  Ritwik K Niyogi,et al.  Learning-rate-dependent clustering and self-development in a network of coupled phase oscillators. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[349]  Pak Ming Hui,et al.  Disconnected-connected network transitions and phase separation driven by co-evolving dynamics , 2009 .

[350]  Ira B Schwartz,et al.  Enhanced vaccine control of epidemics in adaptive networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[351]  E. Ott,et al.  Adaptive synchronization of coupled chaotic oscillators. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[352]  O. Sporns,et al.  Key role of coupling, delay, and noise in resting brain fluctuations , 2009, Proceedings of the National Academy of Sciences.

[353]  Edward Ott,et al.  Spontaneous synchronization of coupled oscillator systems with frequency adaptation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[354]  Olaf Sporns,et al.  Symbiotic relationship between brain structure and dynamics , 2009, BMC Neuroscience.

[355]  M. Pascual,et al.  Understanding the dynamics of rapidly evolving pathogens through modeling the tempo of antigenic change: influenza as a case study. , 2009, Epidemics.

[356]  P. Sobkowicz STUDIES OF OPINION STABILITY FOR SMALL DYNAMIC NETWORKS WITH OPPORTUNISTIC AGENTS , 2009, 0905.4507.

[357]  Patrick Jenny,et al.  Vascular Graph Model to Simulate the Cerebral Blood Flow in Realistic Vascular Networks , 2009, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[358]  Mario di Bernardo,et al.  Novel decentralized adaptive strategies for the synchronization of complex networks , 2009, Autom..

[359]  F. Wörgötter,et al.  Activity-dependent structural plasticity , 2009, Brain Research Reviews.

[360]  C. Watkins,et al.  The spread of awareness and its impact on epidemic outbreaks , 2009, Proceedings of the National Academy of Sciences.

[361]  Emanuele Pugliese,et al.  Heterogeneous pair approximation for voter models on networks , 2009, 0903.5489.

[362]  Thilo Gross,et al.  Adaptive self-organization in a realistic neural network model. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[363]  Thilo Gross,et al.  Patterns of cooperation: fairness and coordination in networks of interacting agents , 2009, 0902.2954.

[364]  F. C. Santos,et al.  Reacting differently to adverse ties promotes cooperation in social networks. , 2009, Physical review letters.

[365]  Toshio Aoyagi,et al.  Co-evolution of phases and connection strengths in a network of phase oscillators. , 2009, Physical review letters.

[366]  Wulfram Gerstner,et al.  Firing patterns in the adaptive exponential integrate-and-fire model , 2008, Biological Cybernetics.

[367]  Jonathan Touboul,et al.  Dynamics and bifurcations of the adaptive exponential integrate-and-fire model , 2008, Biological Cybernetics.

[368]  M. Barthelemy,et al.  Microdynamics in stationary complex networks , 2008, Proceedings of the National Academy of Sciences.

[369]  F. Garofalo,et al.  Synchronization of complex networks through local adaptive coupling. , 2008, Chaos.

[370]  M. Rosenblum,et al.  Partially integrable dynamics of hierarchical populations of coupled oscillators. , 2008, Physical review letters.

[371]  Philipp Hövel,et al.  Time-delayed feedback in neurosystems , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[372]  Andrey Shilnikov,et al.  When weak inhibition synchronizes strongly desynchronizing networks of bursting neurons. , 2008, Physical review letters.

[373]  Mario di Bernardo,et al.  Adaptive synchronization of complex networks , 2008, Int. J. Comput. Math..

[374]  Daichi Kimura,et al.  Coevolutionary networks with homophily and heterophily. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[375]  Damián H Zanette,et al.  Contact switching as a control strategy for epidemic outbreaks. , 2008, Journal of theoretical biology.

[376]  E. Ott,et al.  Low dimensional behavior of large systems of globally coupled oscillators. , 2008, Chaos.

[377]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[378]  W. Abraham Metaplasticity: tuning synapses and networks for plasticity , 2008, Nature Reviews Neuroscience.

[379]  Pierre-André Noël,et al.  Time evolution of epidemic disease on finite and infinite networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[380]  Yamir Moreno,et al.  Complex Cooperative Networks from Evolutionary Preferential Attachment , 2008, PloS one.

[381]  F. Vazquez,et al.  Analytical solution of the voter model on uncorrelated networks , 2008, 0803.1686.

[382]  Jochen J. Steil,et al.  Improving reservoirs using intrinsic plasticity , 2008, Neurocomputing.

[383]  Samy Bengio,et al.  Delay learning and polychronization for reservoir computing , 2008, Neurocomputing.

[384]  Wolfgang Lucht,et al.  Tipping elements in the Earth's climate system , 2008, Proceedings of the National Academy of Sciences.

[385]  J. Kurths,et al.  Synchronization in the Kuramoto model: a dynamical gradient network approach. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[386]  E. Ott,et al.  Adaptive synchronization of dynamics on evolving complex networks. , 2008, Physical review letters.

[387]  Ira B Schwartz,et al.  Fluctuating epidemics on adaptive networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[388]  Alain Barrat,et al.  Who's talking first? Consensus or lack thereof in coevolving opinion formation models. , 2007, Physical review letters.

[389]  D. Zanette,et al.  Infection Spreading in a Population with Evolving Contacts , 2007, Journal of biological physics.

[390]  Maxi San Miguel,et al.  Generic absorbing transition in coevolution dynamics. , 2007, Physical review letters.

[391]  Thilo Gross,et al.  Adaptive coevolutionary networks: a review , 2007, Journal of The Royal Society Interface.

[392]  A. Barrat,et al.  Consensus formation on adaptive networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[393]  R. Hanel,et al.  Socio-economical dynamics as a solvable spin system on co-evolving networks , 2007, 0707.3085.

[394]  Jianye Zhao,et al.  Adaptive coupling and enhanced synchronization in coupled phase oscillators. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[395]  H. Bergman,et al.  Pathological synchronization in Parkinson's disease: networks, models and treatments , 2007, Trends in Neurosciences.

[396]  Christian Hauptmann,et al.  Multistability in the Kuramoto model with synaptic plasticity. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[397]  Felipe Cucker,et al.  Emergent Behavior in Flocks , 2007, IEEE Transactions on Automatic Control.

[398]  G. Filatrella,et al.  Analysis of a power grid using a Kuramoto-like model , 2007, 0705.1305.

[399]  Jochen J. Steil,et al.  Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning , 2007, Neural Networks.

[400]  I. Kevrekidis,et al.  Robust oscillations in SIS epidemics on adaptive networks: Coarse graining by automated moment closure , 2007, EPL (Europhysics Letters).

[401]  Arne Traulsen,et al.  Coevolution of strategy and structure in complex networks with dynamical linking. , 2006, Physical review letters.

[402]  Damián H. Zanette,et al.  Opinion spreading and agent segregation on evolving networks , 2006 .

[403]  Ljupco Kocarev,et al.  Estimating topology of networks. , 2006, Physical review letters.

[404]  Johannes J. Letzkus,et al.  Learning Rules for Spike Timing-Dependent Plasticity Depend on Dendritic Synapse Location , 2006, The Journal of Neuroscience.

[405]  Marc Timme,et al.  Revealing network connectivity from response dynamics. , 2006, Physical review letters.

[406]  Francisco C. Santos,et al.  Cooperation Prevails When Individuals Adjust Their Social Ties , 2006, PLoS Comput. Biol..

[407]  V. Eguíluz,et al.  Homophily, Cultural Drift, and the Co-Evolution of Cultural Groups , 2006, physics/0609213.

[408]  P. J. Sjöström,et al.  A Cooperative Switch Determines the Sign of Synaptic Plasticity in Distal Dendrites of Neocortical Pyramidal Neurons , 2006, Neuron.

[409]  Changsong Zhou,et al.  Dynamical weights and enhanced synchronization in adaptive complex networks. , 2006, Physical review letters.

[410]  Daniel A. Hojman,et al.  Endogenous networks, social games, and evolution , 2006, Games Econ. Behav..

[411]  D. Zanette,et al.  Coevolution of agents and networks: Opinion spreading and community disconnection , 2006, cond-mat/0603295.

[412]  M. Newman,et al.  Nonequilibrium phase transition in the coevolution of networks and opinions. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[413]  Thilo Gross,et al.  Epidemic dynamics on an adaptive network. , 2005, Physical review letters.

[414]  Gourab Ghoshal,et al.  Dynamics of networking agents competing for high centrality and low degree. , 2005, Physical review letters.

[415]  M. Keeling,et al.  Networks and epidemic models , 2005, Journal of The Royal Society Interface.

[416]  Jochen Triesch,et al.  A Gradient Rule for the Plasticity of a Neuron's Intrinsic Excitability , 2005, ICANN.

[417]  E.M. Atkins,et al.  A survey of consensus problems in multi-agent coordination , 2005, Proceedings of the 2005, American Control Conference, 2005..

[418]  Patrick C Phillips,et al.  Network thinking in ecology and evolution. , 2005, Trends in ecology & evolution.

[419]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[420]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[421]  Y. Dan,et al.  Spike-timing-dependent synaptic plasticity depends on dendritic location , 2005, Nature.

[422]  Jürgen Kurths,et al.  Phase synchronization in ensembles of bursting oscillators. , 2004, Physical review letters.

[423]  Eugene M. Izhikevich,et al.  Which model to use for cortical spiking neurons? , 2004, IEEE Transactions on Neural Networks.

[424]  S. Strogatz,et al.  Chimera states for coupled oscillators. , 2004, Physical review letters.

[425]  J. Kurths,et al.  Synchronization of two interacting populations of oscillators. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[426]  C. W. Gear,et al.  Projecting to a Slow Manifold: Singularly Perturbed Systems and Legacy Codes , 2004, SIAM J. Appl. Dyn. Syst..

[427]  Peter A. Tass,et al.  A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations , 2003, Biological Cybernetics.

[428]  K. Kaneko,et al.  Spontaneous structure formation in a network of dynamic elements. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[429]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[430]  Sanjeev Goyal,et al.  Network Formation and Social Coordination , 2003, Games Econ. Behav..

[431]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[432]  Sandeep Krishna,et al.  Graph Theory and the Evolution of Autocatalytic Networks , 2002, nlin/0210070.

[433]  Matthew O. Jackson,et al.  The Evolution of Social and Economic Networks , 2002, J. Econ. Theory.

[434]  Rainer Hegselmann,et al.  Opinion dynamics and bounded confidence: models, analysis and simulation , 2002, J. Artif. Soc. Soc. Simul..

[435]  Markus Christen,et al.  Collective bursting in layer IV. Synchronization by small thalamic inputs and recurrent connections. , 2002, Brain research. Cognitive brain research.

[436]  Martin Schneider,et al.  Activity-Dependent Development of Axonal and Dendritic Delays, or, Why Synaptic Transmission Should Be Unreliable , 2002, Neural Computation.

[437]  Jan Karbowski,et al.  Synchrony arising from a balanced synaptic plasticity in a network of heterogeneous neural oscillators. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[438]  Lev S Tsimring,et al.  Plasticity and learning in a network of coupled phase oscillators. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[439]  H. Kaper,et al.  Asymptotic analysis of two reduction methods for systems of chemical reactions , 2001, math/0110159.

[440]  Peter Szmolyan,et al.  Extending slow manifolds near transcritical and pitchfork singularities , 2001 .

[441]  K. Kaneko,et al.  Spontaneous structure formation in a network of chaotic units with variable connection strengths. , 2001, Physical review letters.

[442]  Sanjay Jain,et al.  Crashes, recoveries, and "core shifts" in a model of evolving networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[443]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[444]  L. Abbott,et al.  Synaptic plasticity: taming the beast , 2000, Nature Neuroscience.

[445]  Katarzyna Sznajd-Weron,et al.  Opinion evolution in closed community , 2000, cond-mat/0101130.

[446]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[447]  R. Pemantle,et al.  A dynamic model of social network formation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[448]  Eugene M. Izhikevich,et al.  Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.

[449]  Santa Fe Institute,et al.  A model for the emergence of cooperation, interdependence, and structure in evolving networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[450]  S. Bornholdt,et al.  Topological evolution of dynamical networks: global criticality from local dynamics. , 2000, Physical review letters.

[451]  David A. Rand,et al.  Correlation Equations and Pair Approximations for Spatial Ecologies , 1999 .

[452]  Ruedi Stoop,et al.  Collective Bursting in Populations of Intrinsically Nonbursting Neurons , 1999 .

[453]  Paczuski,et al.  Self-organized networks of competing boolean agents , 1999, Physical review letters.

[454]  Jack D. Cowan,et al.  DYNAMICS OF SELF-ORGANIZED DELAY ADAPTATION , 1999 .

[455]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[456]  Sanjay Jain,et al.  Autocatalytic sets and the growth of complexity in an evolutionary model , 1998, adap-org/9809003.

[457]  R. Spigler,et al.  Adaptive Frequency Model for Phase-Frequency Synchronization in Large Populations of Globally Coupled Nonlinear Oscillators , 1998 .

[458]  Henry Markram,et al.  Neural Networks with Dynamic Synapses , 1998, Neural Computation.

[459]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[460]  E. Olivier,et al.  Coherent oscillations in monkey motor cortex and hand muscle EMG show task‐dependent modulation , 1997, The Journal of physiology.

[461]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[462]  Wulfram Gerstner,et al.  A neuronal learning rule for sub-millisecond temporal coding , 1996, Nature.

[463]  C. D. Levermore,et al.  Moment closure hierarchies for kinetic theories , 1996 .

[464]  M. Bear,et al.  Metaplasticity: the plasticity of synaptic plasticity , 1996, Trends in Neurosciences.

[465]  Wulfram Gerstner,et al.  Temporal coding in the sub-millisecond range: Model of barn owl auditory pathway , 1995, NIPS.

[466]  Christopher K. R. T. Jones,et al.  Tracking invariant manifolds with di erential forms in singularly per-turbed systems , 1994 .

[467]  Nancy Kopell,et al.  Rapid synchronization through fast threshold modulation , 1993, Biological Cybernetics.

[468]  E. Schöll,et al.  Domain formation due to Ostwald ripening in bistable systems far from equilibrium , 1991 .

[469]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[470]  Y. Kuramoto,et al.  A Soluble Active Rotater Model Showing Phase Transitions via Mutual Entertainment , 1986 .

[471]  S. Kauffman Autocatalytic sets of proteins. , 1986 .

[472]  Pravin Varaiya,et al.  Arnold diffusion in the swing equations of a power system , 1984 .

[473]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[474]  R. May,et al.  Population biology of infectious diseases: Part I , 1979, Nature.

[475]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[476]  Robert Zwanzig,et al.  Statistical mechanics of a nonlinear stochastic model , 1978 .

[477]  S. Kauffman Homeostasis and Differentiation in Random Genetic Control Networks , 1969, Nature.

[478]  A. Winfree Biological rhythms and the behavior of populations of coupled oscillators. , 1967, Journal of theoretical biology.

[479]  Norman M. Abramson,et al.  A theory of adaptive systems , 1964 .

[480]  J. French,et al.  A formal theory of social power. , 1956, Psychological review.

[481]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[482]  J. Jeans On the theory of star-streaming and the structure of the universe , 1915 .

[483]  Doheon Kim,et al.  Interplay of random inputs and adaptive couplings in the Winfree model , 2021, Communications on Pure & Applied Analysis.

[484]  P. Tass,et al.  Unlearning tinnitus-related cerebral synchrony with acoustic coordinated reset stimulation: theoretical concept and modelling , 2012, Biological Cybernetics.

[485]  Christian Hauptmann,et al.  Counteracting tinnitus by acoustic coordinated reset neuromodulation. , 2012, Restorative neurology and neuroscience.

[486]  Mario di Bernardo,et al.  Decentralized Adaptive Control for Synchronization and Consensus of Complex Networks , 2009 .

[487]  Y. Dan,et al.  Spike timing-dependent plasticity: a Hebbian learning rule. , 2008, Annual review of neuroscience.

[488]  Ferenc Hartung,et al.  Chapter 5 Functional Differential Equations with State-Dependent Delays: Theory and Applications , 2006 .

[489]  Mehran Mesbahi,et al.  On state-dependent dynamic graphs and their controllability properties , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[490]  G. Bi,et al.  Synaptic modification by correlated activity: Hebb's postulate revisited. , 2001, Annual review of neuroscience.

[491]  Peter Szmolyan,et al.  Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points - Fold and Canard Points in Two Dimensions , 2001, SIAM J. Math. Anal..

[492]  Maxi San Miguel,et al.  Cooperation in an Adaptive Network , 2000, Adv. Complex Syst..

[493]  Guillaume Deffuant,et al.  Mixing beliefs among interacting agents , 2000, Adv. Complex Syst..

[494]  E. Izhikevich,et al.  Oscillatory Neurocomputers with Dynamic Connectivity , 1999 .

[495]  Robert E. O'Malley,et al.  Analyzing Multiscale Phenomena Using Singular Perturbation Methods , 1999 .

[496]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[497]  Helmut Neunzert,et al.  An introduction to the nonlinear Boltzmann-Vlasov equation , 1984 .

[498]  A.R. Bergen,et al.  A Structure Preserving Model for Power System Stability Analysis , 1981, IEEE Transactions on Power Apparatus and Systems.

[499]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[500]  R. L. Dobrushin,et al.  Vlasov equations , 1979 .

[501]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[502]  L. Boltzmann Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen , 1970 .

[503]  A. D. Fokker Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld , 1914 .