On the combinatorics of normal ordering bosonic operators and deformations of it

Recently some combinatorial aspects for the normal ordering of powers of arbitrary monomials of boson operators were discussed. In particular, it was shown that the resulting formulae lead to generalizations of the usual Bell and Stirling numbers. In this paper these considerations are generalized to the q-deformed case. In particular, it is shown that the simplest example of this generalization leads to q-deformed Lah numbers. The connection between (generalized) Stirling and Bell numbers and matrix elements of the above-mentioned operators with respect to the usual Fock space basis and coherent states is discussed.

[1]  Leonard Carlitz,et al.  $q$-Bernoulli numbers and polynomials , 1948 .

[2]  R. Jagannathan,et al.  On the number operators of single-mode q-oscillators , 1992 .

[3]  Jiang Zeng,et al.  The q -Stirling numbers, continued fractions and the q -Charlier and q -Laguerre polynomials , 1995 .

[4]  L. C. Biedenharn,et al.  The quantum group SUq(2) and a q-analogue of the boson operators , 1989 .

[5]  Jacob Katriel,et al.  Bell numbers and coherent states , 2000 .

[6]  P. P. Kulish,et al.  On the q oscillator and the quantum algebra suq(1,1) , 1990 .

[7]  W. Broniowski,et al.  Quark matter with neutral pion condensate , 1990 .

[8]  L. Vinet,et al.  A note on (p, q)-oscillators and bibasic hypergeometric functions , 1993 .

[9]  Carl G. Wagner,et al.  Generalized Stirling and Lah numbers , 1996, Discret. Math..

[10]  Gérard Henry Edmond Duchamp,et al.  Ordering relations for q-boson operators, continued fraction techniques and the q-CBH enigma , 1995 .

[11]  Chaturvedi,et al.  Aspects of q-oscillator quantum mechanics. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[12]  Leonard Carlitz,et al.  On abelian fields , 1933 .

[13]  A. J. Macfarlane,et al.  On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q , 1989 .

[14]  C. Daskaloyannis,et al.  Quantum groups and their applications in nuclear physics , 1999 .

[15]  H. Gould The $q$-Stirling numbers of first and second kinds , 1961 .

[16]  Rafael I. Nepomechie,et al.  $q$ Deformations of the O(3) Symmetric Spin 1 Heisenberg Chain , 1990 .

[17]  Metin Arik,et al.  Hilbert spaces of analytic functions and generalized coherent states , 1976 .

[18]  Jacob Katriel,et al.  Normal ordering for deformed boson operators and operator-valued deformed Stirling numbers , 1992 .

[19]  R. Parthasarathy,et al.  A q-analogue of the supersymmetric oscillator and its q-superalgebra , 1991 .

[20]  Stephen C. Milne,et al.  A $q$-analog of restricted growth functions, Dobinski’s equality, and Charlier polynomials , 1978 .

[21]  R. Jagannathan,et al.  Generalized q-fermion oscillators and q-coherent states , 1992 .

[22]  Jian Xu,et al.  Comment on the q-deformed fermionic oscillator , 1991 .

[23]  Jeffrey B. Remmel,et al.  A Combinatorial Interpretation of q-Derangement and q-Laguerre Numbers , 1980, Eur. J. Comb..

[24]  Harold Exton,et al.  q-hypergeometric functions and applications , 1983 .

[25]  Jacob Katriel,et al.  Combinatorial aspects of boson algebra , 1974 .

[26]  S. Suslov Another addition theorem for the q-exponential function , 2000 .

[27]  C. Daskaloyannis,et al.  Equivalence of deformed fermionic algebras , 1993 .

[28]  Jeffrey B. Remmel,et al.  Q-counting rook configurations and a formula of frobenius , 1986, J. Comb. Theory A.

[29]  Ramaswamy Jagannathan,et al.  A (p, q)-oscillator realization of two-parameter quantum algebras , 1991 .

[30]  Jacob Katriel,et al.  Stirling number identities: interconsistency of q-analogues , 1998 .

[31]  Gong Ren-shan A completeness relation for the coherent states of the (p,q)-oscillator by (p,q)-integration , 1994 .

[32]  Chaturvedi,et al.  Generalized commutation relations for a single-mode oscillator. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[33]  Michelle L. Wachs,et al.  p, q-Stirling numbers and set partition statistics , 1990, J. Comb. Theory A.