m) High-Power InGaAsP-Active Diode Lasers

Short-wavelength Al-free active-region com- pressively strained ( %) InGaAsP single-quantum- well diode lasers have been optimized for high continuous-wave (CW) output powers. The use of a highly misoriented substrate is shown to improve the low-temperature spectral characteristics of the quantum well active and result in higher laser performance. By employing strain compensated active regions and growth on highly misoriented substrates, record-high characteristic temperature coefficients (115-125 K) and (400-500 K) are achieved for this wavelength region ( m). A broad waveguide laser design with In (Ga Al ) P cladding layers is utilized to achieve CW output powers of 3.2 W (100- m wide, mm), with stable operation demonstrated at 0.5-W CW.

[1]  M. Razeghi,et al.  High‐power InGaAsP/GaAs 0.8‐μm laser diodes and peculiarities of operational characteristics , 1994 .

[2]  Ramon U. Martinelli,et al.  High-power (>10 W) continuous-wave operation from 100-μm-aperture 0.97-μm-emitting Al-free diode lasers , 1998 .

[3]  P. Dapkus,et al.  Strain effects on InGaP-InGaAsP-GaAsP tensile strained quantum-well lasers , 1995, IEEE Photonics Technology Letters.

[4]  Dan Botez,et al.  8.8 W CW power from broad-waveguide Al-free active-region (/spl lambda/=805 nm) diode lasers , 1998 .

[5]  R. Bringans,et al.  Tensile-strained AlGaAsP and InGaAsP-(AlGa)/sub 0.5/In/sub 0.5/P quantum well laser diodes for TM-mode emission in the wavelength range 650 , 1994, IEEE Photonics Technology Letters.

[6]  John C. Connolly,et al.  High-power separate-confinement heterostructure AlGaAs/GaAs laser diodes with broadened waveguide , 1996, Photonics West.

[7]  Dan Botez,et al.  6.1 W continuous wave front-facet power from Al-free active-region (λ=805 nm) diode lasers , 1998 .

[8]  M. Jansen,et al.  High-power InAlGaAs-GaAs laser diode emitting near 731 nm , 1997, IEEE Photonics Technology Letters.

[9]  Y. Kokubo,et al.  High-power operation of broad-area laser diodes with GaAs and AlGaAs single quantum wells for Nd:YAG laser pumping , 1991 .

[10]  J. Jowett,et al.  Gain and threshold characteristics of strain-compensated multiple-quantum-well lasers , 1992, IEEE Photonics Technology Letters.

[11]  J. K. Wade,et al.  730-nm-emitting Al-free active-region diode lasers with compressively strained InGaAsP quantum wells , 1998 .

[12]  Toshiro Hayakawa,et al.  Highly Reliable Operation of High-Power InGaAsP/InGaP/AlGaAs 0.8 µ m Separate Confinement Heterostructure Lasers , 1995 .

[13]  John W. Cockburn,et al.  Optical spectroscopic determination of the electronic band structure of bulk AlGaInP and GaInP-AlGaInP heterojunction band offsets , 1997, Photonics West.

[14]  Andreas Hangleiter,et al.  Influence of p-doping and waveguide composition on the lasing properties of 630-nm band AlGaInP laser diodes , 1998, Technical Digest. Summaries of Papers Presented at the Conference on Lasers and Electro-Optics. Conference Edition. 1998 Technical Digest Series, Vol.6 (IEEE Cat. No.98CH36178).

[15]  Manijeh Razeghi,et al.  Long-term reliability of Al-free InGaAsP/GaAs (λ=808 nm) lasers at high-power high-temperature operation , 1997 .

[16]  Dan Botez,et al.  Design considerations and analytical approximations for high continuous-wave power, broad-waveguide diode lasers , 1999 .

[17]  John P. R. David,et al.  The influence of trimethylindium impurities on the performance of InAlGaAs single quantum well lasers , 1998 .

[18]  M. Razeghi,et al.  InGaP/InGaAsP/GaAs 0.808 /spl mu/m separate confinement laser diodes grown by metalorganic chemical vapor deposition , 1994, IEEE Photonics Technology Letters.

[19]  Y. Uematsu,et al.  Analysis and application of theoretical gain curves to the design of multi-quantum-well lasers , 1985, IEEE Journal of Quantum Electronics.

[20]  T. Toyonaka,et al.  High-power highly-reliable operation of 0.98-/spl mu/m InGaAs-InGaP strain-compensated single-quantum-well lasers with tensile-strained InGaAsP barriers , 1995 .

[21]  J. Nappi,et al.  100 W cw Al-free 808 nm linear bar arrays , 1997, CLEO '97., Summaries of Papers Presented at the Conference on Lasers and Electro-Optics.

[22]  Richard Schatz,et al.  Steady state model for facet heating leading to thermal runaway in semiconductor lasers , 1994 .

[23]  A. Norman,et al.  Transmission electron microscope and transmission electron diffraction observations of alloy clustering in liquid-phase epitaxial (001) GaInAsP layers , 1985 .

[25]  D. Welch,et al.  High power 875 nm Al-free laser diodes , 1994, IEEE Photonics Technology Letters.