A theoretical framework for quantum image representation and data loading scheme

Two fundamental problems exist in the use of quantum computation to process an image or signal. The first one is how to represent giant data, such as image data, using quantum state without losing information. The second one is how to load a colossal volume of data into the quantum registers of a quantum CPU from classical electronic memory. Researches on these two questions are rarely reported. Here an entangled state is used to represent an image (or vector) for which two entangled registers are used to store a vector component and its classical address. Using the representation, n1 + n2 + 8 qubits are used to store the whole information of the gray image that has a $2^{n_1 } \times 2^{n_2 } $ size at a superposition of states, a feat is not possible with a classic computer. The way of designing a unitary operation to load data, such as a vector (or image), into the quantum registers of a quantum CPU from electronic memory is defined herein as a quantum loading scheme (QLS). In this paper, the QLS with time complexity O(log2N) is presented where N denotes the number of vector components, a solution that would break through the efficiency bottleneck of loading data. QLS would enable a quantum CPU to be compatible with electronic memory and make possible quantum image compression and quantum signal processing that has classical input and output.

[1]  Emma Strubell An Introduction to Quantum Algorithms , 2011 .

[2]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[3]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[4]  Michele Mosca Quantum Algorithms , 2009, Encyclopedia of Complexity and Systems Science.

[5]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[6]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[7]  Gernot Schaller,et al.  Quantum algorithm for optical-template recognition with noise filtering (10 pages) , 2005, quant-ph/0512057.

[8]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[10]  Ben-Qiong Hu,et al.  Quantum Pattern Recognition of Classical Signal , 2007 .

[11]  Shafi Goldwasser,et al.  Proceedings : 35th Annual Symposium on Foundations of Computer Science, November 20-22, 1994, Santa Fe, New Mexico , 1994 .

[12]  Chao Yang Pang,et al.  Quantum Discrete Cosine Transform for Image Compression , 2006 .

[13]  Anton Zeilinger,et al.  Wave–particle duality of C60 molecules , 1999, Nature.

[14]  Jian-Wei Pan,et al.  Demonstration of a compiled version of Shor's quantum factoring algorithm using photonic qubits. , 2007, Physical review letters.

[15]  Guo Guang-Can,et al.  A hybrid quantum encoding algorithm of vector quantization for image compression , 2006 .

[16]  Andreas J. Winter,et al.  On the Distributed Compression of Quantum Information , 2006, IEEE Transactions on Information Theory.

[17]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[18]  John Watrous,et al.  Quantum Computational Complexity , 2008, Encyclopedia of Complexity and Systems Science.

[19]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[20]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[21]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[22]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[23]  P. Shor INTRODUCTION TO QUANTUM ALGORITHMS , 2000, quant-ph/0005003.

[24]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[25]  D. Coppersmith An approximate Fourier transform useful in quantum factoring , 2002, quant-ph/0201067.

[26]  庞朝阳,et al.  Design of quantum VQ iteration and quantum VQ encoding algorithm taking O(N1/2) steps for data compression , 2006 .

[27]  I. Devetak,et al.  Classical data compression with quantum side information , 2003 .

[28]  Griffiths,et al.  Semiclassical Fourier transform for quantum computation. , 1995, Physical review letters.

[29]  Michele Mosca,et al.  Quantum Computer Algorithms , 2003 .

[30]  A. Galindo,et al.  Information and computation: Classical and quantum aspects , 2001, quant-ph/0112105.

[31]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[32]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[33]  Pang Chao-Yang,et al.  A quantum search algorithm of two entangled registers to realize quantum discrete Fourier transform of signal processing , 2008 .

[34]  Michele Mosca,et al.  Algorithms for Quantum Computers , 2010, Handbook of Natural Computing.

[35]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[36]  A. Winter Compression of sources of probability distributions and density operators , 2002, quant-ph/0208131.

[37]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[38]  R. Schützhold,et al.  Pattern recognition on a quantum computer , 2003 .

[39]  Raymond Laflamme,et al.  An Introduction to Quantum Computing , 2007, Quantum Inf. Comput..

[40]  G. Vidal,et al.  Entanglement in quantum critical phenomena. , 2002, Physical review letters.

[41]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[42]  R. Feynman Simulating physics with computers , 1999 .

[43]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[44]  A. Winter,et al.  Trading quantum for classical resources in quantum data compression , 2002, quant-ph/0204038.

[45]  Nicholas A. Peters,et al.  Counterfactual quantum computation through quantum interrogation , 2006, Nature.

[46]  Samuel L. Braunstein,et al.  A quantum analog of huffman coding , 2000, IEEE Trans. Inf. Theory.

[47]  S. Lloyd,et al.  Architectures for a quantum random access memory , 2008, 0807.4994.