Negative bases and automata

We study expansions in non-integer negative base -beta introduced by Ito and Sadahiro. Using countable automata associated with (-beta)-expansions, we characterize the case where the (-beta)-shift is a system of finite type. We prove that, if beta is a Pisot number, then the (-beta)-shift is a sofic system. In that case, addition (and more generally normalization on any alphabet) is realizable by a finite transducer. We then give an on-line algorithm for the conversion from positive base beta to negative base -beta. When beta is a Pisot number, the conversion can be realized by a finite on-line transducer.

[1]  D. Dombek,et al.  Numbers with integer expansion in the numeration system with negative base , 2009 .

[2]  William Y. C. Chen The skew, relative, and classical derangements , 1996, Discret. Math..

[3]  Wolfgang Steiner,et al.  Dynamical properties of the negative beta-transformation , 2011, Ergodic Theory and Dynamical Systems.

[4]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[5]  Christiane Frougny,et al.  On Negative Bases , 2009, Developments in Language Theory.

[6]  Taizo Sadahiro,et al.  Beta-Expansions with Negative Bases , 2009 .

[7]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[8]  Berndt Farwer,et al.  ω-automata , 2002 .

[9]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[10]  A. Rényi Representations for real numbers and their ergodic properties , 1957 .

[11]  Christiane Frougny On-line finite automata for addition in some numeration systems , 1999, RAIRO Theor. Informatics Appl..

[12]  Edita Pelantová,et al.  Arithmetics in number systems with a negative base , 2010, Theor. Comput. Sci..

[13]  Jean-Michel Muller Some Characterizations of Functions Computable in On-Line Arithmetic , 1994, IEEE Trans. Computers.

[14]  J. Allouche Algebraic Combinatorics on Words , 2005 .

[15]  Ira M. Gessel Applications of the classical umbral calculus , 2001 .

[16]  Thomas Sudkamp,et al.  Languages and Machines , 1988 .

[17]  Jeffrey Shallit,et al.  ALGEBRAIC COMBINATORICS ON WORDS (Encyclopedia of Mathematics and its Applications 90) By M. LOTHAIRE: 504 pp., £60.00, ISBN 0 521 81220 8 (Cambridge University Press, 2002) , 2003 .

[18]  G. Rota The Number of Partitions of a Set , 1964 .

[19]  J. Karhumäki,et al.  ALGEBRAIC COMBINATORICS ON WORDS (Encyclopedia of Mathematics and its Applications 90) By M. LOTHAIRE: 504 pp., 60.00, ISBN 0 521 81220 8 (Cambridge University Press, 2002) , 2003 .

[20]  Yoichiro Takahashi,et al.  Markov subshifts and realization of β-expansions , 1974 .

[21]  J. Sakarovitch,et al.  Combinatorics, Automata and Number Theory: Number representation and finite automata , 2010 .

[22]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[23]  Franz Hofbauer,et al.  Maximal measures for piecewise monotonically increasing transformations on [0,1] , 1979 .

[24]  M. D. Vries,et al.  Unique expansions of real numbers , 2006, math/0609708.

[25]  K. Schmidt,et al.  On Periodic Expansions of Pisot Numbers and Salem Numbers , 1980 .

[26]  Sergi Elizalde,et al.  The largest and the smallest fixed points of permutations , 2010, Eur. J. Comb..

[27]  Jacques Sakarovitch,et al.  Elements of Automata Theory , 2009 .

[28]  F. Shultz Dimension groups for interval maps , 2004, math/0405466.

[29]  F. Shultz,et al.  Dimension groups for interval maps II: the transitive case , 2004, Ergodic Theory and Dynamical Systems.

[30]  Christiane Frougny,et al.  Representations of numbers and finite automata , 1992, Mathematical systems theory.

[31]  W. Parry On theβ-expansions of real numbers , 1960 .

[32]  Yoichiro Takahashi,et al.  A Formula for Topological Entropy of One-dimensional Dynamics , 1980 .

[33]  Steven Roman The Umbral Calculus , 1984 .