DYNAMICS AND STABILITY AND CONTROL CHARACTERISTICS OF THE X-37
暂无分享,去创建一个
This paper presents the stability and control analysis and the control design results for the Boeing/NASA/AFRL X-37. The X-37 is a flight demonstrator vehicle that will go into space and after its mission, autonomously reenter and land on a conventional runway. This paper studies the dynamics and control of the X-37 from atmospheric reentry through landing. A nominal trajectory that lands on the Edwards Air Force Base Lakebed is considered for all the analysis and design. The X-37's longitudinal and lateral/directional bare-airframe characteristics are presented. The level of maneuvering control power is assessed. Vehicle trim with multiple surfaces is discussed. Special challenges where the wings loose roll effectiveness are discussed and solutions are presented. Aerodynamic uncertainties and flexibility modeling issues are presented. Control design results and robustness analysis methods are presented. Results are provided for the Entry, Terminal Area Energy Management (TAEM), and Approach and Land phases.